Catalytic Polymerization of Phthalonitrile Resins by Carborane with Enhanced Thermal Oxidation Resistance: Experimental and Molecular Simulation.
Polymers (Basel) 2022;
14:polym14010219. [PMID:
35012241 PMCID:
PMC8747195 DOI:
10.3390/polym14010219]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Biphenyl phthalonitrile (BPh) resins with good thermal and thermo-oxidative stability demonstrate great application potential in aerospace and national defense industries. However, BPh monomer has a high melting point, poor solubility, slow curing speed and high curing temperature. It is difficult to control the polymerization process to obtain the resins with high performance. Here, a BPh prepolymer (BPh-Q) was prepared by reacting 1,7-bis(hydroxymethyl)-m-carborane (QCB) with BPh monomers. The BPh-Q exhibited much better solubility, faster curing speed and lower curing temperature compared with pure BPh and BPh modified with bisphenol A (BPh-B, a common prepolymer of BPh). Thus, the polymerization process of BPh was greatly accelerated at a low temperature, resulting in a BPh resin with enhanced thermostability and oxidation resistance. The experimental and theoretical models revealed the promotion effect of B-H bond on the curing reaction of phthalonitrile via Markovnikov addition reaction due to the special steric structure of carborane. This study provided an efficient method to obtain low-temperature curing phthalonitrile resins with high thermal and thermo-oxidative resistance, which would be potentially useful for the preparation of high-performance cyanide resin-based composites.
Collapse