Ultrasound in cellulose-based hydrogel for biomedical use: From extraction to preparation.
Colloids Surf B Biointerfaces 2022;
212:112368. [PMID:
35114437 DOI:
10.1016/j.colsurfb.2022.112368]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023]
Abstract
As the most abundant natural polymer on the pl anet, cellulose has a wide range of applications in the biomedical field. Cellulose-based hydrogels further expand the applications of this class of biomaterials. However, a number of publications and technical reports are mainly about traditional preparation methods. Sonochemistry offers a simple and green route to material synthesis with the biomedical application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Ultrasonication not only improves the efficiency of cellulose extraction from raw materials, but also influences the hydrogel preparation process. The primary objective of this article is to review the literature concerning the biomedical cellulose-based hydrogel prepared via sonochemistry and application of ultrasound for hydrogel. An innovated category of recent generations of hydrogel materials prepared via ultrasound was also presented in some details.
Collapse