1
|
Grekova AV, Ivanchenko PO, Koksharova TV, Burdina YF. Initiation of Polymerization of Vinyl Monomers by Copper(II) Glycylglycinate and Aminoacetate Complexes with 4-Phenylthiosemicarbazide. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
3
|
Chernikova EV, Toms RV, Gervald AY, Prokopov NI. Fiber-Forming Acrylonitrile Copolymers: From Synthesis to Properties of Carbon Fiber Precursors and Prospects for Industrial Production. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s1811238220010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Peltekoff AJ, Tousignant MN, Hiller VE, Melville OA, Lessard BH. Controlled Synthesis of Poly(pentafluorostyrene-ran-methyl methacrylate) Copolymers by Nitroxide Mediated Polymerization and Their Use as Dielectric Layers in Organic Thin-film Transistors. Polymers (Basel) 2020; 12:E1231. [PMID: 32485806 PMCID: PMC7361672 DOI: 10.3390/polym12061231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
A library of statistically random pentafluorostyrene (PFS) and methyl methacrylate (MMA) copolymers with narrow molecular weight distributions was produced, using nitroxide mediated polymerization (NMP) to study the effect of polymer composition on the performance of bottom-gate top-contact organic thin-film transistors, when utilized as the dielectric medium. Contact angle measurements confirmed the ability to tune the surface properties of copolymer thin films through variation of its PFS/MMA composition, while impedance spectroscopy determined the effect of this variation on dielectric properties. Bottom-gate, top-contact copper phthalocyanine (CuPc) based organic thin-film transistors were fabricated using the random copolymers as a dielectric layer. We found that increasing the PFS content led to increased field-effect mobility, until a point after which the CuPc no longer adhered to the polymer dielectric.
Collapse
Affiliation(s)
| | | | | | | | - Benoît H. Lessard
- Department of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5 1, Canada; (A.J.P.); (M.N.T.); (V.E.H.); (O.A.M.)
| |
Collapse
|
6
|
He JY, Lu M. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of acrylonitrile in miniemulsion. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie-Yu He
- College of Marine Science & Technology, Hainan Tropical Ocean University, Sanya, China
| | - Mang Lu
- Department of Chemistry, Nanchang Normal University, Nanchang, China
| |
Collapse
|
7
|
Lei Q, Peng B, Ma KKY, Zhang Z, Wang X, Luo J, Tam KC. ARGET ATRP of Triblock Copolymers (PMMA- b-PEO- b-PMMA) and Their Microstructure in Aqueous Solution. ACS OMEGA 2018; 3:15996-16004. [PMID: 31458238 PMCID: PMC6643851 DOI: 10.1021/acsomega.8b02489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/13/2018] [Indexed: 06/10/2023]
Abstract
Triblock copolymers poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with designed molecular weight of PMMA and PEO blocks were synthesized via the activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) of MMA. The Br-terminated Br-PEO-Br with the molecular weights of 20k and 100k were used as macroinitiators. ARGET ATRP was performed with ppm level amount CuBr2 as the catalyst and ascorbic acid as the reducing agent to overcome the sensitivity to oxygen in a traditional ATRP. The molecular weight of the PMMA block was manipulated by changing the molar ratio of monomers to the Br-PEO-Br macroinitiators. The synthesis of PMMA-b-PEO-b-PMMA and its structure was confirmed by Fourier transform infrared and 1H NMR, and the molecular weight of the PMMA block was determined by 1H NMR. Aqueous solutions of PMMA-b-PEO-b-PMMA were prepared by solvent-exchange, and their microstructures were examined by tensiometry, static light scattering, and transmission electron microscopy. The effects of molecular weight of the PMMA and PEO blocks on the microstructure were elucidated.
Collapse
Affiliation(s)
- Qun Lei
- Key
Laboratory of Nano Chemistry, Key Laboratory of Oilfield Chemistry,
CNPC, Research Institute of Petroleum Exploration
& Development (RIPED), PetroChina, Beijing 100083, P. R. China
| | - Baoliang Peng
- Key
Laboratory of Nano Chemistry, Key Laboratory of Oilfield Chemistry,
CNPC, Research Institute of Petroleum Exploration
& Development (RIPED), PetroChina, Beijing 100083, P. R. China
- Key
Laboratory of Nano Chemistry, CNPC, Beijing 100083, P. R.
China
| | - Kris King Yiu Ma
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Zhen Zhang
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Xiaocong Wang
- Key
Laboratory of Nano Chemistry, Key Laboratory of Oilfield Chemistry,
CNPC, Research Institute of Petroleum Exploration
& Development (RIPED), PetroChina, Beijing 100083, P. R. China
- Key
Laboratory of Nano Chemistry, CNPC, Beijing 100083, P. R.
China
| | - Jianhui Luo
- Key
Laboratory of Nano Chemistry, Key Laboratory of Oilfield Chemistry,
CNPC, Research Institute of Petroleum Exploration
& Development (RIPED), PetroChina, Beijing 100083, P. R. China
- Key
Laboratory of Nano Chemistry, CNPC, Beijing 100083, P. R.
China
| | - Kam Chiu Tam
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1653-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Asymmetric Copolymers: Synthesis, Properties, and Applications of Gradient and Other Partially Segregated Copolymers. Macromol Rapid Commun 2018; 39:e1800357. [DOI: 10.1002/marc.201800357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Junliang Zhang
- MOE Key Laboratory; of Material Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Macromolecular Science and Technology; Department of Applied Chemistry; School of Science; Northwestern Polytechnical University; Xi’an Shaanxi 710072 P. R. China
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Barbara Farias-Mancilla
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mathias Destarac
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Ulrich S. Schubert
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Daniel J. Keddie
- Faculty of Science and Engineering; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1LY UK
| | - Carlos Guerrero-Sanchez
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Simon Harrisson
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|