1
|
Chen Y, Wang H, Wan Y, Li S, Zhang L, Xing Z, Zhang Q, Xia L. Poly(ionic liquid)s-Based Thermal-Responsive Microgel for Use as SERS Substrates with "ON-OFF" Switchable Effect. Macromol Rapid Commun 2024; 45:e2400028. [PMID: 38593331 DOI: 10.1002/marc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
A temperature-responsive surface-enhanced Raman scattering (SERS) substrate with "ON-OFF" switching based on poly(ionic liquid)s (PILs) block copolymer microgels have been designed and synthesized. The PIL units act as a joint component to anchor the gold nanoparticles (AuNPs) and analytes onto poly(N-isopropylacrylamide) (PNIPAm). This anchor allows the analytes to be fixed at the formed hot spots under temperature stimulus. Owing to the regulation of the PNIPAm segment, the SERS substrates exhibit excellent thermally responsive SERS activity with a reversible "ON-OFF" effect. Additionally, because of the anion exchange of PILs, microgels can introduce new analytes, which offers more flexibility for the system. The substrate shows excellent reversibility, controllability, and flexibility of SERS activity, which is expected to have a broad application in the field of practical SERS sensors.
Collapse
Affiliation(s)
- Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yu Wan
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Shun Li
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, China
- Liaoning Key Lab Chem Addit Synth & Separat, Yingkou Institute of Technology, Yingkou, 115014, China
| |
Collapse
|
2
|
McBride RJ, Geneste E, Xie A, Ryan AJ, Miller JF, Blanazs A, Rösch C, Armes SP. Low-Viscosity Route to High-Molecular-Weight Water-Soluble Polymers: Exploiting the Salt Sensitivity of Poly( N-acryloylmorpholine). Macromolecules 2024; 57:2432-2445. [PMID: 38495382 PMCID: PMC10938879 DOI: 10.1021/acs.macromol.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
We report a new one-pot low-viscosity synthetic route to high molecular weight non-ionic water-soluble polymers based on polymerization-induced self-assembly (PISA). The RAFT aqueous dispersion polymerization of N-acryloylmorpholine (NAM) is conducted at 30 °C using a suitable redox initiator and a poly(2-hydroxyethyl acrylamide) (PHEAC) precursor in the presence of 0.60 M ammonium sulfate. This relatively low level of added electrolyte is sufficient to salt out the PNAM block, while steric stabilization is conferred by the relatively short salt-tolerant PHEAC block. A mean degree of polymerization (DP) of up to 6000 was targeted for the PNAM block, and high NAM conversions (>96%) were obtained in all cases. On dilution with deionized water, the as-synthesized sterically stabilized particles undergo dissociation to afford molecularly dissolved chains, as judged by dynamic light scattering and 1H NMR spectroscopy studies. DMF GPC analysis confirmed a high chain extension efficiency for the PHEAC precursor, but relatively broad molecular weight distributions were observed for the PHEAC-PNAM diblock copolymer chains (Mw/Mn > 1.9). This has been observed for many other PISA formulations when targeting high core-forming block DPs and is tentatively attributed to chain transfer to polymer, which is well known for polyacrylamide-based polymers. In fact, relatively high dispersities are actually desirable if such copolymers are to be used as viscosity modifiers because solution viscosity correlates closely with Mw. Static light scattering studies were also conducted, with a Zimm plot indicating an absolute Mw of approximately 2.5 × 106 g mol-1 when targeting a PNAM DP of 6000. Finally, it is emphasized that targeting such high DPs leads to a sulfur content for this latter formulation of just 23 ppm, which minimizes the cost, color, and malodor associated with the organosulfur RAFT agent.
Collapse
Affiliation(s)
- Rory J. McBride
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Elisa Geneste
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Andi Xie
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Anthony J. Ryan
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - John F. Miller
- Enlighten
Scientific LLC, Hillsborough, North Carolina 27278, United States
| | - Adam Blanazs
- BASF
SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Christine Rösch
- BASF
SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Steven P. Armes
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| |
Collapse
|
3
|
Ulker D, Ozyurt R, Erkasap N, Butun V. Magnetic Targeting of 5-Fluorouracil-Loaded Liposome-Nanogels for In Vivo Breast Cancer Therapy and the Cytotoxic Effects on Liver and Kidney. AAPS PharmSciTech 2022; 23:289. [DOI: 10.1208/s12249-022-02438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
|
4
|
Dikmen Z, Işık M, Turhan O, Akbari M, Tuncer C, Javanifar R, Bütün V. Thiazolo Thiazole Based Dye Modified Microspheres as Metal Nanoparticle Reactor Template and Hybrid Catalyst. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
6
|
|
7
|
Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02574-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Kocak G. Preparation and catalytic properties of modified PGMA‐based pH‐responsive hydrogel films as a novel template for
in situ
synthesis of Au, Ag, and Au:Ag nanoparticles. J Appl Polym Sci 2019. [DOI: 10.1002/app.48360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gökhan Kocak
- Department of ChemistryAdiyaman University Adiyaman 02040 Turkey
| |
Collapse
|
10
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|