1
|
Haghjoo S, Lengauer CL, Kazemian H, Roushani M. Facile and innovative application of surfactant-modified-zeolite from Austrian fly ash for glyphosate removal from water solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118976. [PMID: 37738732 DOI: 10.1016/j.jenvman.2023.118976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
This study highlights a pioneering approach in the development of an efficient, affordable, and economically feasible adsorbent specifically tailored for the removal of glyphosate (Gly) from contaminated water. To accomplish this objective, a low-cost and pure NaA Zeolite (NaAZ) was synthesized with 93% crystallinity from Austrian fly ash (AFA) as a precursor for the first-time. Taguchi design was employed to optimize critical parameters such as the SiO2/Al2O3 ratio, alkalinity concentration, time, and temperature. The cation exchange capacity (CEC) and external cation exchange capacity (ECEC) are determined as critical factors for the modification process. Subsequently, the pure NaAZ was modified with hexadecyl trimethyl ammonium chloride (HDTMAC), a cationic surfactant. The utilization of surfactant-modified zeolite (SMZ) for Gly removal demonstrates its innovative application in this field, highlighting its enhanced adsorption capacity and optimized surface properties. The AFA, NaAZ, and SMZ were characterized using analytical techniques including XRD, XRF, FTIR-ATR, SEM, TGA, BET, CHNSO analyzer and ICP-OES. The adsorbent exhibited effective Gly removal through its pH-dependent charge properties (pH 2-10), with an optimized pH 6 facilitating a significant electrostatic interaction between the adsorbent and Gly. SMZ demonstrated remarkable adsorption capacity and removal efficacy, surpassing most reported adsorbents with values of 769.23 mg/g and 98.92% respectively. Our study demonstrates the significant advantage of the SMZ, with a low leaching concentration of only 6 ppm after 60 days, ensuring environmental safety, long-term stability, and public health considerations. The kinetics of the adsorption process was well described by the pseudo-second order and the Freundlich isotherm. Pore diffusion and H-bonding were postulated to be involved in physisorption, whereas electrophilic interactions led to chemisorption type of adsorption. Consequently, SMZ provides a practical significance, broad applicability and promising solution for Gly removal, facilitating sustainable water treatment.
Collapse
Affiliation(s)
- Sarah Haghjoo
- Universität Wien, Institut für Mineralogie und Kristallographie, Geozentrum (UZA II), Raum 2.B3.48, 1090 Wien, Josef-Holaubek-Platz 2, Austria; Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
| | - Christian L Lengauer
- Universität Wien, Institut für Mineralogie und Kristallographie, Geozentrum (UZA II), Raum 2.B3.48, 1090 Wien, Josef-Holaubek-Platz 2, Austria.
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada.
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P. O. BOX. 69315-516, Iran
| |
Collapse
|
2
|
Takahashi F, Matsuda K, Nakazawa T, Mori S, Yoshida M, Shimizu R, Tatsumi H, Jin J. Synthesis and characterization of molecularly imprinted polymers for detection of the local anesthetic lidocaine in urine. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fumiki Takahashi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Kazusane Matsuda
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Tomoyuki Nakazawa
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Shuki Mori
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Masachika Yoshida
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Ryo Shimizu
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Hirosuke Tatsumi
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| | - Jiye Jin
- Department of Chemistry Faculty of Science Shinshu University Matsumoto Nagano Japan
| |
Collapse
|
3
|
Ionela Raluca CS, van Staden J(KF, Stefan-van Staden RI. Minireview - Recent Developments in Electrochemical Detection of Atrazine. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Comnea-Stancu Ionela Raluca
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
5
|
Che Lah NF, Ahmad AL, Low SC, Zaulkiflee ND. Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio. MEMBRANES 2021; 11:657. [PMID: 34564474 PMCID: PMC8468889 DOI: 10.3390/membranes11090657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor.
Collapse
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.F.C.L.); (S.C.L.); (N.D.Z.)
| | | | | |
Collapse
|
6
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
7
|
Pratama KF, Manik MER, Rahayu D, Hasanah AN. Effect of the Molecularly Imprinted Polymer Component Ratio on Analytical Performance. Chem Pharm Bull (Tokyo) 2021; 68:1013-1024. [PMID: 33132368 DOI: 10.1248/cpb.c20-00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imprinting technology is a new analytical method that is highly selective and specific for certain analytes in artificial receptor design. The renewal possibilities of this technology make it an ideal material for sundry application fields. Molecularly imprinted polymers (MIPs) are polymeric matrices that have molecules printed on their surfaces; these surfaces can chemically interact with molecules or follow the pattern of the available template cavities obtained using imprinting technology. A MIP is useful for separating and analysing complex samples, such as biological fluids and environmental samples, because it is a strong analytical recognition element that can mimick natural recognition entities like biological receptors and antibodies. The MIP components consist of the target template, functional monomer, crosslinker, polymerisation initiator, and porogen. The effectiveness and selectivity of a MIP are greatly influenced by variations in the components. This review will provide an overview of the effect of MIP component ratio on analytical performance to each target analyte; it will also provide a strategy to obtain the best MIP performance. For every MIP, each template : monomer : crosslinker ratio shows a distinct performance for a specific analyte. The effects of the template : monomer : crosslinker ratio on a MIP's analytical performances-measured by the imprinting factor, sorbent binding capacity, and sorbent selectivity-are briefly outlined.
Collapse
Affiliation(s)
- Kelvin Fernando Pratama
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| | | | - Driyanti Rahayu
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| |
Collapse
|