1
|
Leng Y, Britten CN, Tarannum F, Foley K, Billings C, Liu Y, Walters KB. Stimuli-Responsive Phosphate Hydrogel: A Study on Swelling Behavior, Mechanical Properties, and Application in Expansion Microscopy. ACS OMEGA 2024; 9:37687-37701. [PMID: 39281925 PMCID: PMC11391540 DOI: 10.1021/acsomega.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Phosphorus-based stimuli-responsive hydrogels have potential in a wide range of applications due to their ionizable phosphorus groups, biocompatibility, and tunable swelling capacity utilizing hydrogel design parameters and external stimuli. In this study, poly(2-methacryloyloxyethyl phosphate) (PMOEP) hydrogels were synthesized via aqueous activators regenerated by electron transfer atomic transfer radical polymerization using ascorbic acid as the reducing agent. Swelling and deswelling behaviors of PMOEP hydrogels were examined in different salt solutions, pH conditions, and temperatures. The degree of swelling in salt solutions followed CaCl2 < MgCl2 < KCl < NaCl with a decrease in swelling rate at higher concentrations until reaching a saturation point. In water, the degree of swelling increased significantly around neutral pH and remained constant at basic pH values. The effects of polymerization conditions, including pH, temperature (30, 40, 50 °C), and MOEP concentration (40, 50, 60% v/v MOEP/H2O), on the hydrogel swelling behavior in various salt solutions were also investigated. PMOEP hydrogels showed a decrease in the degree of swelling as the pH was increased above the native pH of the monomer solution. Scanning electron microscopy and energy-dispersive spectroscopy were utilized to examine the microstructure and chemical composition of the dried hydrogel after salt solution swelling. Cytotoxicity testing using rat bone marrow stem cells confirmed the biocompatibility of the PMOEP hydrogels. A unique feature of this effort was evaluation of these phosphate hydrogels for use in expansion microscopy where a significant twofold enhancement in cellular expansion capacity was showcased utilizing 4T1 mouse breast cancer cells. This comprehensive study provides valuable insights into the stimuli-responsive behavior and expansion characteristics of phosphate hydrogels, highlighting their potential in diverse biomedical applications.
Collapse
Affiliation(s)
- Yokly Leng
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Collin N Britten
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Fatema Tarannum
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kayla Foley
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher Billings
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Keisha B Walters
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
4
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Tandem catalysis of Atom Transfer Radical Polymerization of acrylonitrile based on simultaneous use of two copper complexes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Grishin DF, Lizyakina OS, Vaganova LB, Kaltenberg AA, Grishin ID. Radical polymerization of methyl methacrylate in the presence of methylene blue and organobromides under visible light irradiation. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Borsari M, Braidi N, Buffagni M, Ghelfi F, Parenti F, Porcelli N, Serafini G, Isse AA, Bonifaci L, Cavalca G, Longo A, Morandini I, Pettenuzzo N. Copper-catalyzed ARGET ATRP of styrene from ethyl α-haloisobutyrate in EtOAc/EtOH, using ascorbic acid/Na2CO3 as reducing system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
9
|
Sollka L, Lienkamp K. Progress in the Free and Controlled Radical Homo- and Co-Polymerization of Itaconic Acid Derivatives: Toward Functional Polymers with Controlled Molar Mass Distribution and Architecture. Macromol Rapid Commun 2020; 42:e2000546. [PMID: 33270308 DOI: 10.1002/marc.202000546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Indexed: 01/23/2023]
Abstract
Polymeric derivatives of itaconic acid are becoming increasingly more interesting for research and industry because itaconic acid is accessible from renewable resources. In spite of the structural similarity of poly(itaconic acid derivatives) to poly(methacrylates), they are much less reactive, homopolymerize only sluggishly by free radical polymerization (FRP), and are often obtained with low molar masses and conversions. This has so far limited their use. The reasons for the low reactivity of itaconic acid derivatives (including itaconimides, diitaconates, and diitaconamides) are combined steric and electronic effects, as demonstrated by the body of literature on the FRP homopolymerization kinetics of these monomers which is summarized herein. These problems can be solved to a large extent by using controlled radical polymerization (CRP) techniques, notably atom transfer radical polymerization (ATRP) and reversible addition and fragmentation chain transfer radical polymerization (RAFT). By optimizing the reaction conditions for the ATRP and RAFT of itaconic acid derivatives, in particular the reaction temperature, linear relations between molar mass and conversion are obtained in many cases, and homopolymers with high molar masses and reasonably narrow polydispersity indices become accessible. This review presents the state-of-the-art FRP and CRP of itaconic acid derivatives, and highlights functional polymers obtained by these methods.
Collapse
Affiliation(s)
- Lea Sollka
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Department of Materials Science and Engineering, Universität des Saarlandes, Campus, Saarbrücken, 66123, Germany
| |
Collapse
|
10
|
Dhar A, Singh U, Koiry BP, Baishya B, Haloi DJ. Investigation of microstructure in poly(methyl methacrylate) prepared via ambient temperature ARGET-ATRP: a combined approach of 1D and 2D NMR spectroscopy. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02153-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Hajifatheali H, Ahmadi E, Marefat M. Synthesis of N-benzyl-2-(dodecylthio)-N-(2-(dodecylthio)ethyl)ethanamine: new ligand for block copolymerization of styrene and methyl methacrylate using ATRP. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-019-1960-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Li Z, He Z, Chen X, Tang Y, You S, Chen Y, Jin T. Preparation of hydrophobically modified cotton filter fabric with high hydrophobic stability using ARGET-ATRP mechanism. RSC Adv 2019; 9:24659-24669. [PMID: 35528699 PMCID: PMC9069611 DOI: 10.1039/c9ra04123k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/03/2019] [Indexed: 11/21/2022] Open
Abstract
This paper reports on the hydrophobic modification of cotton fabric grafted with 1-octadecene via an activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) mechanism. Particularly, the activation treatment of raw cotton fabric, its influence on the graft-copolymerization by the ARGET-ATRP method, along with the super-hydrophobicity and hydrophobic stability of the modified cotton fabric are discussed. Furthermore, the microstructure and elemental variation were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and the energy dispersion spectrum (EDS) technique. The results show that chemical activation of the raw cotton fabric can significantly improve the follow-up hydrophobic modification process. Specifically, the contact angle of the hydrophobically modified cotton fabric increased to 145° after activation, and thus, this fabric presents more stable hydrophobicity (corresponding to a 5.5% contact angle attenuation) than a non-activated fabric. The hydrophobic modification reaction was carried out using a chemically optimum stoichiometric ratio of m(CuBr2) : m(C9H23N3) : m(C2H5OH) : m(C18H36) : m(C6H8O6) = 0.015 : 0.052 : 17.9 : 2.4 : 0.05, at a temperature of 30–55 °C over 8 h. Furthermore, the SEM and AFM images revealed that more copolymer micro/nano-level particles were present on the surface of the fibers of the hydrophobically modified cotton fabric, indicating that the hydrophobic property and stability of the cotton fabric increase with the grafting density on the cotton fabric. This paper reports on the hydrophobic modification of cotton fabric grafted with 1-octadecene via an electron transfer (ARGET) atom transfer radical polymerization (ATRP) mechanism.![]()
Collapse
Affiliation(s)
- Zheng Li
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- University of Chinese Academy of Sciences
| | - Zijian He
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- University of Chinese Academy of Sciences
| | - Xiaodan Chen
- Guangzhou CAS Test Technical Services Co., Ltd
- Guangzhou 510650
- China
| | - Yi Tang
- Chongqing CAS Test Technical Services Co., Ltd
- Chongqing 400700
- China
| | - Shiwen You
- Chongqing CAS Test Technical Services Co., Ltd
- Chongqing 400700
- China
| | - Yufang Chen
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Guangzhou CAS Test Technical Services Co., Ltd
| | - Tao Jin
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Guangzhou CAS Test Technical Services Co., Ltd
| |
Collapse
|