1
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Chohan TA, Hamza M, Nazari K, Ahmad Z. Transcutaneous Delivery of Dexamethasone Sodium Phosphate Via Microneedle-Assisted Iontophoretic Enhancement - A Potential Therapeutic Option for Inflammatory Disorders. Pharm Res 2024; 41:1183-1199. [PMID: 38849712 DOI: 10.1007/s11095-024-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
AIM This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Hamza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Ajaz N, Bukhsh M, Kamal Y, Rehman F, Irfan M, Khalid SH, Asghar S, Rizg WY, Bukhary SM, Hosny KM, Alissa M, Safhi AY, Sabei FY, Khan IU. Development and evaluation of pH sensitive semi-interpenetrating networks: assessing the impact of itaconic acid and aloe vera on network swelling and cetirizine release. Front Bioeng Biotechnol 2023; 11:1173883. [PMID: 37229490 PMCID: PMC10203566 DOI: 10.3389/fbioe.2023.1173883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are crosslinked three-dimensional networks, and their properties can be easily tuned to target the various segments of the gastrointestinal tract (GIT). Cetirizine HCl (CTZ HCl) is an antihistaminic drug, which when given orally can upset the stomach. Moreover, this molecule has shown maximum absorption in the intestine. To address these issues, we developed a pH-responsive semi-interpenetrating polymer network (semi-IPN) for the delivery of CTZ HCl to the lower part of the GIT. Initially, 10 different formulations of itaconic acid-grafted-poly (acrylamide)/aloe vera [IA-g-poly (AAm)/aloe vera] semi-IPN were developed by varying the concentration of IA and aloe vera using the free radical polymerization technique. Based on swelling and sol-gel analysis, formulation F5 containing 0.3%w/w aloe vera and 6%w/w IA was chosen as the optimum formulation. The solid-state characterization of the optimized formulation (F5) revealed a successful incorporation of CTZ HCl in semi-IPN without any drug-destabilizing interaction. The in vitro drug release from F5 showed limited release in acidic media followed by a controlled release in the intestinal environment for over 72 h. Furthermore, during the in vivo evaluation, formulation F5 did not affect the hematological parameters, kidney, and liver functions. Clinical observations did not reveal any signs of illness in rabbits treated with hydrogels. Histopathological images of vital organs of treated animals showed normal cellular architecture. Thus, the results suggest a non-toxic nature and overall potential of the developed formulation as a targeted drug carrier.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Munnaza Bukhsh
- Foundation University and Medical College Islamabad Department of Medicine, Islamabad, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Chemical Laboratories, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2023; 227:505-523. [PMID: 36495992 DOI: 10.1016/j.ijbiomac.2022.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Hydrogel is a three-dimensional network polymer material rich in water. It is widely used in the biomedical field because of its unique physical and chemical properties and good biocompatibility. In recent years, the incidence of inflammatory bowel disease (IBD) has gradually increased, and the disadvantages caused by traditional drug treatment of IBD have emerged. Therefore, there is an urgent need for new treatments to alleviate IBD. Hydrogel has become a potential therapeutic platform. However, there is a lack of comprehensive review of functional hydrogels for IBD treatment. This paper first summarizes the pathological changes in IBD sites. Then, the action mechanisms of hydrogels prepared from chitosan, sodium alginate, hyaluronic acid, functionalized polyethylene glycol, cellulose, pectin, and γ-polyglutamic acid on IBD were described from aspects of drug delivery, peptide and protein delivery, biologic therapies, loading probiotics, etc. In addition, the advanced functions of IBD treatment hydrogels were summarized, with emphasis on adhesion, synergistic therapy, pH sensitivity, particle size, and temperature sensitivity. Finally, the future development direction of IBD treatment hydrogels has been prospected.
Collapse
Affiliation(s)
- Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China.
| |
Collapse
|
4
|
Ciftbudak S, Orakdogen N. Correlation between effective charge density and crosslinking efficiency of dicarboxylic acid containing highly anionic networks. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, Characterization and biomedical evaluations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Ajaz N, Khan IU, Irfan M, Khalid SH, Asghar S, Mehmood Y, Asif M, Usra, Hussain G, Shahzad Y, Shah SU, Munir MU. In Vitro and Biological Characterization of Dexamethasone Sodium Phosphate Laden pH-Sensitive and Mucoadhesive Hydroxy Propyl β-Cyclodextrin-g-poly(acrylic acid)/Gelatin Semi-Interpenetrating Networks. Gels 2022; 8:290. [PMID: 35621588 PMCID: PMC9140464 DOI: 10.3390/gels8050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The current study reports the fabrication and biological evaluation of hydroxy propyl β-cyclodextrin-g-poly(acrylic acid)/gelatin (HP-β-CD-g-poly(AA)/gelatin) semi-interpenetrating networks (semi-IPN) for colonic delivery of dexamethasone sodium phosphate (DSP). The prepared hydrogels showed pH-dependent swelling and mucoadhesive properties. The mucoadhesive strength of hydrogels increased with an increasing concentration of gelatin. Based on the swelling and mucoadhesive properties, AG-1 was chosen as the optimized formulation (0.33% w/w of gelatin and 16.66% w/w of AA) for further analysis. FTIR revealed the successful development of a polymeric network without any interaction with DSP. SEM images revealed a slightly rough surface after drug loading. Drug distribution at the molecular level was confirmed by XRD. In vitro drug release assay showed pH-dependent release, i.e., a minute amount of DSP was released at a pH of 1.2 while 90.58% was released over 72 h at pH 7.4. The optimized formulation did not show any toxic effects on a rabbit's vital organs and was also hemocompatible, thus confirming the biocompatible nature of the hydrogel. Conclusively, the prepared semi-IPN hydrogel possessed the necessary features, which can be exploited for the colonic delivery of DSP.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.A.); (I.U.K.); (M.I.); (S.H.K.); (S.A.); (Y.M.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Usra
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.); (G.H.)
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54700, Pakistan;
| | - Shefaat Ullah Shah
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
7
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|