1
|
Unalan I, Slavik B, Buettner A, Boccaccini AR. Phytotherapeutic Hierarchical PCL-Based Scaffolds as a Multifunctional Wound Dressing: Combining 3D Printing and Electrospinning. Macromol Biosci 2024:e2400253. [PMID: 39254603 DOI: 10.1002/mabi.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Indexed: 09/11/2024]
Abstract
This study focuses on developing hybrid scaffolds incorporating phytotherapeutic agents via a combination of three-dimensional (3D) printing and electrospinning to enhance mechanical properties and provide antibacterial activity, in order to address the limitations of traditional antibiotics. In this regard, 3D-printed polycaprolactone (PCL) struts are first fabricated using fused deposition modeling (FDM). Then, alkaline surface treatment is applied to improve the adhesion of electrospun nanofibers. Finally, peppermint oil (PEP) or clove oil (CLV)-incorporated PCL-gelatin (GEL) electrospun nanofibers are collected on top of the 3D-printed PCL scaffolds by electrospinning. Incorporating PEP or CLV into PCL-GEL electrospun nanofibers enhances the scaffold's layer detachment and adhesion force. In addition, the DPPH free radical scavenging activity assay indicates that incorporating PEP or CLV improves the antioxidant properties of the scaffolds. Further, antibacterial activity results reveal that PEP or CLV incorporated scaffolds exhibit inhibition against Staphylococcus aureus and Escherichia coli bacteria. Moreover, anti-inflammatory assays show that scaffolds reduce the concentration of nitric oxide (NO) released from Raw 264.7 macrophage-like cells. On the other hand, the phytotherapeutic hierarchical scaffolds have no toxic effect on normal human dermal fibroblast (NHDF) cells, and PEP or CLV enhance cell attachment and proliferation. Overall, incorporating natural phytotherapeutic agents into hierarchical scaffolds shows promise for advancing wound healing applications.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Benedikt Slavik
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
3
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Yaseri R, Fadaie M, Mirzaei E, Samadian H, Ebrahiminezhad A. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Sci Rep 2023; 13:9434. [PMID: 37296193 PMCID: PMC10256742 DOI: 10.1038/s41598-023-36563-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Hydrolysis and aminolysis are two main commonly used chemical methods for surface modification of hydrophobic tissue engineering scaffolds. The type of chemical reagents along with the concentration and treatment time are main factors that determine the effects of these methods on biomaterials. In the present study, electrospun poly (ℇ-caprolactone) (PCL) nanofibers were modified through hydrolysis and aminolysis. The applied chemical solutions for hydrolysis and aminolysis were NaOH (0.5-2 M) and hexamethylenediamine/isopropanol (HMD/IPA, 0.5-2 M) correspondingly. Three distinct incubation time points were predetermined for the hydrolysis and aminolysis treatments. According to the scanning electron microscopy results, morphological changes emerged only in the higher concentrations of hydrolysis solution (1 M and 2 M) and prolonged treatment duration (6 and 12 h). In contrast, aminolysis treatments induced slight changes in the morphological features of the electrospun PCL nanofibers. Even though surface hydrophilicity of PCL nanofibers was noticeably improved through the both methods, the resultant influence of hydrolysis was comparatively more considerable. As a general trend, both hydrolysis and aminolysis resulted in a moderate decline in the mechanical performance of PCL samples. Energy dispersive spectroscopy analysis indicated elemental changes after the hydrolysis and aminolysis treatments. However, X-ray diffraction, thermogravimetric analysis, and infrared spectroscopy results did not show noticeable alterations subsequent to the treatments. The fibroblast cells were well spread and exhibited a spindle-like shape on the both treated groups. Furthermore, according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the surface treatment procedures ameliorated proliferative properties of PCL nanofibers. These findings represented that the modified PCL nanofibrous samples by hydrolysis and aminolysis treatments can be considered as the potentially favorable candidates for tissue engineering applications.
Collapse
Affiliation(s)
- Raziye Yaseri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Fadaie
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hadi Samadian
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
5
|
Miranda CS, Silva AFG, Seabra CL, Reis S, Silva MMP, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Sodium alginate/polycaprolactone co-axial wet-spun microfibers modified with N-carboxymethyl chitosan and the peptide AAPV for Staphylococcus aureus and human neutrophil elastase inhibition in potential chronic wound scenarios. BIOMATERIALS ADVANCES 2023; 151:213488. [PMID: 37285725 DOI: 10.1016/j.bioadv.2023.213488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 μg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.
Collapse
Affiliation(s)
- Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - A Francisca G Silva
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - M Manuela P Silva
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | | | - Susana P G Costa
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Natália C Homem
- Digital Transformation CoLab (DTx), Building 1, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
6
|
Langwald SV, Ehrmann A, Sabantina L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. MEMBRANES 2023; 13:488. [PMID: 37233549 PMCID: PMC10220787 DOI: 10.3390/membranes13050488] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.
Collapse
Affiliation(s)
- Sarah Vanessa Langwald
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
7
|
Farazin A, Zhang C, Ghasemi AH. Preparation and identification of new antibacterial and biocompatible dressings based on gelatin/polyvinyl alcohol and castor oil. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Liu J, Jiang W, Xu Q, Zheng Y. Progress in Antibacterial Hydrogel Dressing. Gels 2022; 8:503. [PMID: 36005104 PMCID: PMC9407327 DOI: 10.3390/gels8080503] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Antibacterial hydrogel has excellent antibacterial property and good biocompatibility, water absorption and water retention, swelling, high oxygen permeability, etc.; therefore, it widely applied in biomedicine, intelligent textiles, cosmetics, and other fields, especially for medical dressing. As a wound dressing, the antibacterial hydrogel has the characteristics of absorbing wound liquid, controlling drug release, being non-toxic, being without side effects, and not causing secondary injury to the wound. Its preparation method is simple, and can crosslink via covalent or non-covalent bond, such as γ-radiation croFsslinking, free radical polymerization, graft copolymerization, etc. The raw materials are easy to obtain; usually these include chondroitin sulfate, sodium alginate, polyvinyl alcohol, etc., with different raw materials being used for different antibacterial modes. According to the hydrogel matrix and antibacterial mode, the preparation method, performance, antibacterial mechanism, and classification of antibacterial hydrogels are summarized in this paper, and the future development direction of the antibacterial hydrogel as wound dressing is proposed.
Collapse
Affiliation(s)
- Jie Liu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| | - Wenqi Jiang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Qianyue Xu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Yongjie Zheng
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
9
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
10
|
Xu S, Yang L, Wu X, Yang Y, Zhou Y, Ye C. Rapid in situ hepatic hemostasis using a P34HB/tranexamic acid fibrous membrane delivered by a handheld electrospinning apparatus. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Teixeira MA, Antunes JC, Seabra CL, Fertuzinhos A, Tohidi SD, Reis S, Amorim MTP, Ferreira DP, Felgueiras HP. Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications. BIOMATERIALS ADVANCES 2022; 137:212830. [PMID: 35929263 DOI: 10.1016/j.bioadv.2022.212830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Infection is a major issue in chronic wound care. Different dressings have been developed to prevent microbial propagation, but an effective, all-in-one (cytocompatible, antimicrobial and promoter of healing) solution is still to be uncovered. In this research, polyvinyl alcohol (PVA) nanofibrous mats reinforced with cellulose nanocrystal (CNC), at 10 and 20% v/v ratios, were produced by electrospinning, crosslinked with glutaraldehyde vapor and doped with specialized peptides. Crosslinking increased the mats' fiber diameters but maintained their bead-free morphology. Miscibility between polymers was confirmed by Fourier-transform infrared spectroscopy and thermal evaluations. Despite the incorporation of CNC having reduced the mats' mechanical performance, it improved the mats' surface energy and its structural stability over time. Pexiganan with an extra cysteine group was functionalized onto the mats via hydroxyl- polyethylene glycol 2-maleimide, while Tiger 17 was physisorbed to preserve its cyclic conformation. Antimicrobial assessments demonstrated the peptide-doped mat's effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa; pexiganan contributed mostly for such outcome. Tiger 17 showed excellent capacity in accelerating clotting. Cytocompatibility evaluations attested to these mats' safety. C90/10 PVA/CNC mats were deemed the most effective from the tested group and, thus, a potentially effective option for chronic wound treatments.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Aureliano Fertuzinhos
- Center for MicroElectroMechanics Systems (CMEMS), UMinho, Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
12
|
Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 2022; 209:1526-1541. [PMID: 35469947 DOI: 10.1016/j.ijbiomac.2022.04.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
In this research, we propose to engineer a nanostructured mat that can simultaneously kill bacteria and promote an environment conducive to healing for prospective wound care. Polyvinyl alcohol (PVA) and cellulose acetate (CA) were combined at different polymer ratios (100/0, 90/10, 80/20% v/v), electrospun and crosslinked with glutaraldehyde vapor. Crosslinked fibers increased in diameter (from 194 to 278 nm), retaining their uniform structure. Fourier-transform infrared spectroscopy and thermal analyses proved the excellent miscibility between polymers. CA incorporation incremented the fibers swelling capacity and reduced the water vapor and air permeabilities of the mats, preventing the excessive drying of wounds. The antimicrobial peptide cys-pexiganan and the immunoregulatory peptide Tiger 17 were incorporated onto the mats via polyethylene glycol spacer (hydroxyl-PEG2-maleimide) and physisorbed, respectively. Time-kill kinetics evaluations revealed the mats effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa. Tiger 17 played a major role in accelerating clotting of re-calcified plasma. Data reports for the first time the collaborative effect of pexiganan and Tiger 17 against bacterial infections and in boosting hemostasis. Cytocompatibility data verified the peptide-modified mats safety. Croslinked 90/10 PVA/CA mats were deemed the most promising combination due to their moderate hydrophilicity and permeabilities, swelling capacity, and high yields of peptide loading.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
13
|
Mehta K, Kumar V, Rai B, Kumar R, Kumar G. Development of cost effective, breathable & biocompatible nanosilver impregnated, acrylic acid grafted non-woven polypropylene (NWPP) wound dressing material with long lasting antimicrobial efficacy. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Mini‐review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela Roberta Alves Costa
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Emerson Oliveira Silva
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| |
Collapse
|