Yoon IH, Choi WK, Lee SC, Min BY, Yang HC, Lee KW. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities.
JOURNAL OF HAZARDOUS MATERIALS 2012;
219-220:240-246. [PMID:
22525481 DOI:
10.1016/j.jhazmat.2012.03.081]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900°C for 2h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO(2)) and pollucite (Cs(2)OAl(2)O(3)4SiO(2)), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process.
Collapse