1
|
Mansour B, Salem YA, Attallah KM, El-kawy OA, Ibrahim IT, Abdel-Aziz NI. Cyanopyridinone- and Cyanopyridine-Based Cancer Cell Pim-1 Inhibitors: Design, Synthesis, Radiolabeling, Biodistribution, and Molecular Modeling Simulation. ACS OMEGA 2023; 8:19351-19366. [PMID: 37305261 PMCID: PMC10249106 DOI: 10.1021/acsomega.2c08304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
In this study, two new series of 3-cyanopyridinones (3a-e) and 3-cyanopyridines (4a-e) were synthesized and evaluated for their cytotoxicity and Pim-1 kinase inhibitory activity adopting 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and in vitro Pim-1 kinase inhibition assay, respectively. Most of the tested compounds revealed promising cytotoxicity against HepG-2, HCT-116, MCF-7, and PC-3 cell lines. Among them, compounds 4c and 4d showed more potent cytotoxicity against the HePG2 cell line with IC50 = 8.02 ± 0.38 and 6.95 ± 0.34 μM, respectively, than that of the reference 5-FU (IC50 = 9.42 ± 0.46 μM). Moreover, compound 4c was more potent against HCT-116 (IC50 = 7.15 ± 0.35 μM) than 5-FU (IC50 = 8.01 ± 0.39 μM), while compound 4d with IC50 = 8.35 ± 0.42 μM displayed comparable activity to that of the reference drug. Furthermore, high cytotoxic activity was manifested by compounds 4c and 4d against MCF-7 and PC3 cell lines. Our results have also indicated that compounds 4b, 4c, and 4d elicited remarkable inhibition of Pim-1 kinase; 4b and 4c showed equipotent inhibitory activity to that of the reference quercetagetin. Meanwhile, 4d displayed IC50 = 0.46 ± 0.02 μM, showed the best inhibitory activity among the tested compounds, and was more potent than quercetagetin (IC50 = 0.56 ± 0.03 μM). For optimization of the results, docking study of the most potent compounds 4c and 4d in the Pim-1 kinase active site was carried out and compared with both quercetagetin and the reported Pim-1 inhibitor A (VRV), and the results were consistent with those of the biological study. Consequently, compounds 4c and 4d are worthy of further investigations toward the discovery of Pim-1 kinase inhibitors as drug candidates for cancer therapy. Compound 4b was successfully radiolabeled with radioiodine-131, and its biodistribution in Ehrlich ascites carcinoma (EAC)-bearing mice showed more observable uptake in tumor sites, and hence, it can be introduced as a new radiolabeled agent for tumor imaging and therapy.
Collapse
Affiliation(s)
- Basem Mansour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
| | - Yomna A. Salem
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University − Kantara Branch, Ismailia 41636, Egypt
| | - Khaled M. Attallah
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - O. A. El-kawy
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Ismail T. Ibrahim
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Naglaa I. Abdel-Aziz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Motaleb MA, Attalah KM, Shweeta HA, Ibrahim IT. Synthesis and biological evaluation of [ 131I]iodocarvedilol as a potential radiopharmaceutical for heart imaging. BMC Chem 2023; 17:21. [PMID: 36922888 PMCID: PMC10018969 DOI: 10.1186/s13065-023-00935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The optimization of the radiolabeling yield of carvedilol with iodine-131 was described. Dependence of the labeling yield of [131I]iodocarvedilol on the concentration of carvedilol, chloramine-T content, pH of the reaction mixture and reaction time was studied in details. Carvedilol was labeled with iodine-131 at pH 6 with a labeling yield of 92.6 ± 2.77% by using 100 µg carvedilol, 200 µg chloramin-T (CAT) and 30 min reaction time. The formed [131I]iodocarvedilol was nearly stable for a time up to one day. Biodistribution of [131I]iodocarvedilol was investigated in experimental animals. [131/123I]iodocarvedilol was located in the heart with a concentration of 19.6 ± 0.41% of the injected dose at 60 min post injection. It has a high heart uptake and heart to liver ratio, both of which are beneficial for high-quality SPECT (single-photon emission computerized tomography) myocardial imaging. [131/123I]iodocarvedilol solve most the drawbacks of the FDA (Food and Drug Administration) approved 99mTc-sestamibi.
Collapse
Affiliation(s)
- M A Motaleb
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt.
| | - K M Attalah
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt
| | - H A Shweeta
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt
| | - I T Ibrahim
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt
| |
Collapse
|
3
|
Mahmoud AF, Aboumanei MH, Abd-Allah WH, Swidan MM, Sakr TM. New frontier radioiodinated probe based on in silico resveratrol repositioning for microtubules dynamic targeting. Int J Radiat Biol 2023; 99:281-291. [PMID: 35549606 DOI: 10.1080/09553002.2022.2078001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the 'de novo' drug discovery faces a highly attrition rates, drug repositioning procures a heighten concern in identifying novel uses for existing medications. This study aimed to fabricate radioiodinated resveratrol as a potent microtubules interfering agent for cancer theragnosis. METHODS Resveratrol was radiolabeled with radioactive iodine where the radioiodination efficiency was enlightened and the computational approaches were employed to investigate the affinity and specificity with tubulins. Furthermore, the in-vivo distribution and pharmacokinetic studies in normal and tumor induced mice were investigated. RESULTS The maximum radioiodination yield (94.6 ± 1.66) was achieved at optimum preparation parameters stated as 100 μg/mL of oxidizing agent, 100 μg/ml of resveratrol, reaction time of 30 min and reaction pH 5. The in silico studies showed that di-iodinated resveratrol (compound 6) exhibited the best binding score (-34.46) and interaction with the β-tubulin binding site. The in vivo distribution in tumor models revealed a significant accumulation (4.02% ID/g) in tumor lesion at 60 min p.i. The rate of drug elimination demonstrated a mono-exponential decline of radioactivity versus time in the blood. CONCLUSION Radioiodinated resveratrol revealed good microtubules targeting which render it as a novel theranostic probe for cancer management.
Collapse
Affiliation(s)
- Ashgan F Mahmoud
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed H Aboumanei
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Dawoud M, Attallah KM, Abdelhalim SM, Marzook FA, Abdelgawad MR, Mahmoud AF, Ibrahim IT. Labeling of Aspirin with 99mTc to Obtain a Possible Tumor Imaging Agent. RADIOCHEMISTRY 2022. [DOI: 10.1134/s106636222106014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
El Refaye MS, El-Sharawy DM, Hussien H. 125I–Amoxicillin preparation as a guide tracer for inflammation detection. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The objective of this study is to label Amoxicillin with radioactive iodine (125I-AC) via direct electrophilic substitution to act as a promising tracer for inflammation imaging. The highest labeling yield of 80% was achieved after studying all the parameters affecting the labeling reaction using Iodogen (IG) as an oxidizing agent. Molecular Modeling Structure was done using MOE program to predict the suitable 125I position. The product structure was established by a cold iodination reaction using Iodine-127. Biological evaluation of (125I-AC) was carried out using groups of inflamed mice with different exogenous agents such as E.Coli and Turpentine oil. The (125I-AC) shows an in vitro stability of about 97% after 24 h.While doing in vivo studies over 4 h, the tracer stability of 99% was observed.
Collapse
Affiliation(s)
- Marwa S. El Refaye
- Radioactive Isotopes and Generators Department , Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
- Cyclotron Project, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
| | - Dina M. El-Sharawy
- Cyclotron Project, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
- Labeled Compounds Department , Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
- Pharmaceutics and Clinical Pharmacy Department , Faculty of Pharmacy, Nahda University , Beni Suef , Egypt
| | - Heba Hussien
- Cyclotron Project, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
- Labeled Compounds Department , Hot Laboratory Center, Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
| |
Collapse
|
6
|
Optimization and tissue distribution of [125I]iododomperidone as a radiotracer for D2-receptor imaging. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07236-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Ibrahim IT, Attallah KH, Elsaid M, Fahmy MH, Abo Zaid LA. Synthesis of a Potential Tumor Imaging Agent by Oxidative Radioiodination of Aspirin and Its Preclinical Study. RADIOCHEMISTRY 2019. [DOI: 10.1134/s1066362219020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Intranasal drug delivery of iodo-haloperidol as a radiopharmaceutical brain imaging agent. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: In silico study and preclinical evaluation. Appl Radiat Isot 2018; 137:41-49. [DOI: 10.1016/j.apradiso.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022]
|
10
|
Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: In vitro characterization, molecular docking, 125I-radiolabeling and in vivo biodistribution studies. Int J Pharm 2018; 545:240-253. [PMID: 29733973 DOI: 10.1016/j.ijpharm.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
Abstract
A10, (3-phenylacetylamino-2,6-piperidinedione), is a natural peptide with broad antineoplastic activity. Recently, in vitro antitumor effect of a new A10 analog [3-(4-methoxybenzoylamino)-2,6-piperidinedione] (MPD) has been verified. However, poor aqueous solubility represents an obstacle towards intravenous formulation of MPD and impedes successful in vivo antitumor activity. To surmount such limitation, MPD microemulsion (MPDME) was developed. A 3122 full factorial design using Design-Expert® software was adopted to study the influence of different parameters and select the optimum formulation (MPDME1). Transmission electron microscopy (TEM) displayed spherical droplets of MPDME1. The cytotoxicity of MPDME1 in Michigan Cancer Foundation 7 (MCF-7) breast cancer cell line exceeded that of MPD solution (MPDS) and tamoxifen. Compatibility with injectable diluents, in vitro hemolytic studies and in vivo histopathological examination confirmed the safety of parenteral application of MPDME1. Molecular docking results showed almost same binding affinity of A10, MPD and 125I-MPD with histone deacetylase 8 (HDAC8) receptor. Accordingly, radioiodination of MPDME1 and MPDS was done via direct electrophilic substitution reaction. Biodistribution of 125I-MPDME1 and 125I-MPDS in normal and tumor (ascites and solid) bearing mice showed high accumulation of 125I-MPDME1 in tumor tissues. Overall, the results proved that MPDME represents promising parenteral delivery system capable of improving antineoplastic activity of MPD.
Collapse
|
11
|
Molecular modeling and preclinical evaluation of radioiodinated tenoxicam for inflammatory disease diagnosis. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5770-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
131 I-trazodone: preparation, quality control and in vivo biodistribution study by intranasal and intravenous routes as a hopeful brain imaging radiopharmaceutical. Rev Esp Med Nucl Imagen Mol 2017. [DOI: 10.1016/j.remnie.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Motaleb M, Ibrahim I, Sayyed M, Awad G. 131 I-trazodone: preparation, quality control and in vivo biodistribution study by intranasal and intravenous routes as a hopeful brain imaging radiopharmaceutical. Rev Esp Med Nucl Imagen Mol 2017; 36:371-376. [DOI: 10.1016/j.remn.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
|
14
|
Sakr TM, Ibrahim AB, Fasih TW, Rashed HM. Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al–Mo gel. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5560-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
99mTc-hexoprenaline and 131I-dapoxetine: preparation, in silico modeling and biological evaluation as promising lung scintigraphy radiopharmaceuticals. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5500-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Rashed HM, Shamma RN, Basalious EB. Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv 2016; 24:181-187. [PMID: 28156162 PMCID: PMC8241048 DOI: 10.1080/10717544.2016.1236848] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/12/2016] [Indexed: 11/03/2022] Open
Abstract
Nimodipine (NM) is the only FDA-approved drug for treating subarachnoid hemorrhage induced vasospasm. NM has poor oral bioavailability (5-13%) due to its low aqueous solubility, and extensive first pass metabolism. The objective of this study is to develop radiolabeled NM-loaded LPM and to test its ability prolong its circulation time, reduce its frequency of administration and eventually target it to the brain tissue. NM was radiolabeled with 99mTc by direct labeling method using sodium dithionite. Different reaction conditions that affect the radiolabeling yield were studied. The in vivo pharmacokinetic behavior of the optimum NM-loaded LPM formulation in blood, heart, and brain tissue was compared with NM solution, after intravenous and intranasal administration. Results show that the radioactivity percentage (%ID/g) in the heart of mice following administration of 99mTc-NM loaded LPM were lower compared with that following administration of 99mTc-NM solution, which is greatly beneficial to minimize the cardiovascular side effects. Results also show that the %ID/g in the blood, and brain following intravenous administration of 99mTc-NM-loaded LPM were higher at all sampling intervals compared with that following intravenous administration of 99mTc-NM solution. This would be greatly beneficial for the treatment of neurovascular diseases. The drug-targeting efficiency of NM to the brain after intranasal administration was calculated to be 1872.82%. The significant increase in drug solubility, enhanced drug absorption and the long circulation time of the NM-loaded LPM could be promising to improve nasal and parenteral delivery of NM.
Collapse
Affiliation(s)
- Hassan M. Rashed
- Department of Labeled Compounds, Hot Labs. Center, Egyptian Atomic Energy Authority, Cairo, Egypt and
| | - Rehab N. Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv 2016; 23:3681-3695. [PMID: 27648847 DOI: 10.1080/10717544.2016.1223216] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99mTc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.
Collapse
Affiliation(s)
- Samia A Nour
- a Department of Pharmaceutics , Faculty of Pharmacy, Cairo University , Cairo , Egypt and
| | - Nevine S Abdelmalak
- a Department of Pharmaceutics , Faculty of Pharmacy, Cairo University , Cairo , Egypt and
| | - Marianne J Naguib
- a Department of Pharmaceutics , Faculty of Pharmacy, Cairo University , Cairo , Egypt and
| | - Hassan M Rashed
- b Labeled Compounds Department, Hot Lab. Center , Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Ahmed B Ibrahim
- b Labeled Compounds Department, Hot Lab. Center , Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
18
|
Abd-Elal RMA, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv 2016; 23:3374-3386. [PMID: 27128792 DOI: 10.1080/10717544.2016.1183721] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Migraine attack is a troublesome physiological condition associated with throbbing, intense headache, in one half of the head. Zolmitriptan is a potent second-generation triptan, prescribed for patients with migraine attacks, with or without an aura, and cluster headaches. The absolute bioavailability of zolmitriptan is about 40% for oral administration; due to hepatic first metabolism. Nasal administration would circumvent the pre-systemic metabolism thus increasing the bioavailability of zolmitriptan. In addition, due to the presence of microvilli and high vasculature, the absorption is expected to be faster compared to oral route. However, the bioavailability of nasal administered drugs is particularly restricted by poor membrane penetration. Thus, the aim of this work is to explore the potential of novel nanovesicular fatty acid enriched structures (novasomes) for effective and enhanced nasal delivery of zolmitriptan and investigate their nose to brain targeting potential. Novasomes were prepared using nonionic surfactant, cholesterol in addition to a free fatty acid. A 23 full factorial design was adopted to study the influence of the type of surfactant, type of free fatty acid and ratio between the free fatty acid and the surfactant on novasomes properties. The particle size, entrapment efficiency, polydispersity index, zeta potential and % zolmitriptan released after 2 h were selected as dependent variables. Novasomes were further optimized using Design Expert® software (version 7; Stat-Ease Inc., Minneapolis, MN), and an optimized formulation composed of Span® 80:Cholesterol:stearic acid (in the ratio 1:1:1) was selected. This formulation showed zolmitriptan entrapment of 92.94%, particle size of 149.9 nm, zeta potential of -55.57 mV, and released 48.43% zolmitriptan after 2 h. The optimized formulation was further examined using transmission electron microscope, which revealed non-aggregating multi-lamellar nanovesicles with narrow size distribution. DSC, XRD examination of the optimized formulation confirmed that the drug have been homogeneously dispersed throughout the novasomes in an amorphous state. In-vivo bio-distribution studies of 99mTc radio-labeled intranasal zolmitriptan loaded novasomes were done on mice, the pharmacokinetic parameters were compared with those following administration of intravenous 99mTc-zolmitriptan solution. Results revealed the great enhancement in zolmitriptan targeting to the brain, with drug targeting potential of about 99% following intranasal administration of novasomes compared with the intravenous drug solution. Zolmitriptan loaded novasomes administered via the nasal route may therefore constitute an advance in the management of acute migraine attacks.
Collapse
Affiliation(s)
- Radwa M A Abd-Elal
- a Department of Pharmaceutics and Industrial Pharmacy , Modern University for Technology & Information (MTI) , Cairo , Egypt
| | - Rehab N Shamma
- b Department of Pharmaceutics and Industrial Pharmacy , Cairo University , Cairo , Egypt
| | - Hassan M Rashed
- c Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt , and
| | - Ehab R Bendas
- d Clinical Pharmacy Department, Future University in Egypt , New Cairo , Egypt
| |
Collapse
|
19
|
Swidan MM, Sakr TM, Motaleb MA, El-Bary AA, El-Kolaly MT. Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging. J Labelled Comp Radiopharm 2014; 57:593-9. [DOI: 10.1002/jlcr.3223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 11/12/2022]
Affiliation(s)
- M. M. Swidan
- Labeled Compound Department; Hot Labs Center, Atomic Energy Authority; PO13759 Cairo Egypt
| | - T. M. Sakr
- Radioactive Isotopes and Generator Department; Hot Labs Center, Atomic Energy Authority; PO13759 Cairo Egypt
| | - M. A. Motaleb
- Labeled Compound Department; Hot Labs Center, Atomic Energy Authority; PO13759 Cairo Egypt
| | - A. Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department; Faculty of Pharmacy, Cairo University; PO11562 Cairo Egypt
| | - M. T. El-Kolaly
- Labeled Compound Department; Hot Labs Center, Atomic Energy Authority; PO13759 Cairo Egypt
| |
Collapse
|
20
|
Swidan MM, Sakr TM, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3328-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Synthesis, radioiodination and in vivo evaluation of ethyl 1,4-dihydro-7-iodo-4-oxoquinoline-3-carboxylate as a potential pulmonary perfusion scintigraphic radiopharmaceutical. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3299-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Sakr TM. Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent. RADIOCHEMISTRY 2014. [DOI: 10.1134/s1066362214020131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Preparation and biological evaluation of radioiodinated risperidone and lamotrigine as models for brain imaging agents. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3139-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
El-Tawoosy M. Radioiodination of pindolol as a β-adrenergic receptor using different oxidizing agents. RADIOCHEMISTRY 2013. [DOI: 10.1134/s1066362213060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|