1
|
Tan JP, Clyde CW, Ng CC, Yeap SK, Yong CY. Advancements in microbial-mediated radioactive waste bioremediation: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107530. [PMID: 39378736 DOI: 10.1016/j.jenvrad.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The global production of radioactive wastes is expected to increase in the coming years as more countries have resorted to adopting nuclear power to decrease their reliance on fossil-fuel-generated energy. Discoveries of remediation methods that can remove radionuclides from radioactive wastes, including those discharged to the environment, are therefore vital to reduce risks-upon-exposure radionuclides posed to humans and wildlife. Among various remediation approaches available, microbe-mediated radionuclide remediation have limited reviews regarding their advances. This review provides an overview of the sources and existing classification of radioactive wastes, followed by a brief introduction to existing radionuclide remediation (physical, chemical, and electrochemical) approaches. Microbe-mediated radionuclide remediation (bacterial, myco-, and phycoremediation) is then extensively discussed. Bacterial remediation involves biological processes like bioreduction, biosorption, and bioprecipitation. Bioreduction involves the reduction of water-soluble, mobile radionuclides to water-insoluble, immobile lower oxidation states by ferric iron-reducing, sulfate-reducing, and certain extremophilic bacteria, and in situ remediation has become possible by adding electron donors to contaminated waters to enrich indigenous iron- and sulfate-reducing bacteria populations. In biosorption, radionuclides are associated with functional groups on the microbial cell surface, followed by getting reduced to immobilized forms or precipitated intracellularly or extracellularly. Myco- and phycoremediation often involve processes like biosorption and bioaccumulation, where the former is influenced by pH and cell concentration. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis on microbial remediation is also performed. It is suggested that two research directions: genetic engineering of radiation-resistant microorganisms and co-application of microbe-mediated remediation with other remediation methods could potentially result in the discovery of in situ or ex situ microbe-involving radioactive waste remediation applications with high practicability. Finally, a comparison between the strengths and weaknesses of each approach is provided.
Collapse
Affiliation(s)
- Jin Ping Tan
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Christal Winona Clyde
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Enhancement of U(VI) biosorption by Trichoderma harzianum mutant obtained by a cold atmospheric plasma jet. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Kolhe N, Zinjarde S, Acharya C. Removal of uranium by immobilized biomass of a tropical marine yeast Yarrowia lipolytica. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 223-224:106419. [PMID: 32950912 DOI: 10.1016/j.jenvrad.2020.106419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
A marine yeast, Yarrowia lipolytica isolated from an oil polluted sea water and shown earlier to sequester dissolved uranium (U) at pH 7.5, was utilized in the present study for developing an immobilized-cell process for U removal from aqueous solutions under batch and continuous flow through systems. In batch system, optimum biosorption conditions for U removal were assessed by investigating the effects of biomass dose, initial U concentration, contact time and pH of solution using Y. lipolytica cells immobilized in calcium alginate beads. Appreciable uranium-binding capabilities over a wide pH range (3-9) were observed with the alginate beads bearing yeast cells. Out of Langmuir and Freundlich models employed for describing the sorption equilibrium data under batch mode, uranyl adsorption followed Langmuir approach with satisfactory correlation coefficient higher than 0.9. Uranyl adsorption kinetics by Y. lipolytica entrapped in alginate beads was best described by the pseudo-second-order model. While the environmental scanning electron microscopy established the immobilization and the uniform distribution of Y. lipolytica cells in the alginate beads, the Energy Dispersive X-ray spectroscopy analysis confirmed the deposition of U in the beads following their exposure to uranyl solution. Fixed bed flow-through column comprising of Y. lipolytica biomass immobilized in polyacrylamide matrix displayed high efficacy for continuous removal of uranium at pH 7.5 up to five adsorption-desorption cycles. Adsorbed U by immobilized cells could be significantly desorbed using 0.1 N HCl. Overall, our results present the superior efficiency of immobilized Y. lipolytica biomass for U removal using batch and regenerative approaches.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
5
|
Chen C, Hu J, Wang J. Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
A novel biosorbent, i. e. Saccharomyces cerevisiae entrapped in graphene oxide (GO), polyvinyl alcohol (PVA) and alginate and cross-linked in CaCl2- boric acid solution, was prepared, characterized and applied for U (VI) biosorption. The performance of U sorption and cations release (Na, K, Ca and Mg ions) was investigated under different contact time, initial uranium concentration and initial pH. Uranium sorption equilibrium basically achieved after 360 min. The kinetic data of U biosorption and Ca release were best described by the pseudo first-order equation. Both Langmuir and Freundlich models could fit the U sorption isotherm data. With increase of initial uranium (3.7 ~ 472.2 μmol/L) and sodium concentration (78.8 ~ 3911.7 μmol/L), the cations release ((Na + K)/2 + (Ca + Mg)) decreased from 116.9 to 30.1 μmol/g when the corresponding U sorption increased from 0.6 to 77.3 μmol/g. Initial solution pH at 3 was favorable for U sorption when pH ranged from 3 to 7. With increase of uranium concentration, ion exchange played a less role in U removal. The maximum U sorption capacity reached 142.1 μmol/g, calculated from the Langmuir model at initial pH 5. The O-containing functional group, such as carboxyl on the gel bead played an important role in U adsorption according to FTIR and XPS analysis. XPS analysis showed the existence of U (VI) and U (IV) on the surface of gel bead. Ion exchange, complexation and uranium reduction involved in uranium adsorption by the immobilized active dry yeast gel beads.
Collapse
Affiliation(s)
- Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET , Tsinghua University , Beijing 100084 , P.R. China
| | - Jun Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET , Tsinghua University , Beijing 100084 , P.R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET , Tsinghua University , Beijing 100084 , P.R. China
- Beijing Key Laboratory of Radioactive Waste Treatment, Energy Science Building , Tsinghua University , Beijing 100084 , P.R. China
| |
Collapse
|
6
|
Gładysz-Płaska A, Lipke A, Sternik D, Trytek M, Majdan M. Spectroscopic, thermal and equilibrium characterization of U(VI) ions sorption on inulin in the presence of phosphates. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Kolhe N, Zinjarde S, Acharya C. Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 2018; 36:1828-1846. [PMID: 30017503 DOI: 10.1016/j.biotechadv.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth's crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
8
|
Civiero E, Pintus M, Ruggeri C, Tamburini E, Sollai F, Sanjust E, Zucca P. Physiological and Phylogenetic Characterization of Rhodotorula diobovata DSBCA06, a Nitrophilous Yeast. BIOLOGY 2018; 7:biology7030039. [PMID: 29966334 PMCID: PMC6163231 DOI: 10.3390/biology7030039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022]
Abstract
Agriculture and intensive farming methods are the greatest cause of nitrogen pollution. In particular, nitrification (the conversion of ammonia to nitrate) plays a role in global climate changes, affecting the bio-availability of nitrogen in soil and contributing to eutrophication. In this paper, the Rhodotorula diobovata DSBCA06 was investigated for growth kinetics on nitrite, nitrate, or ammonia as the sole nitrogen sources (10 mM). Complete nitrite removal was observed in 48 h up to 10 mM initial nitrite. Nitrogen was almost completely assimilated as organic matter (up to 90% using higher nitrite concentrations). The strain tolerates and efficiently assimilates nitrite at concentrations (up to 20 mM) higher than those previously reported in literature for other yeasts. The best growth conditions (50 mM buffer potassium phosphate pH 7, 20 g/L glucose as the sole carbon source, and 10 mM nitrite) were determined. In the perspective of applications in inorganic nitrogen removal, other metabolic features relevant for process optimization were also evaluated, including renewable sources and heavy metal tolerance. Molasses, corn, and soybean oils were good substrates, and cadmium and lead were well tolerated. Scale-up tests also revealed promising features for large-scale applications. Overall, presented results suggest applicability of nitrogen assimilation by Rhodotorula diobovata DSBCA06 as an innovative tool for bioremediation and treatment of wastewater effluents.
Collapse
Affiliation(s)
- Enrico Civiero
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Manuela Pintus
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Claudio Ruggeri
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Elena Tamburini
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Francesca Sollai
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| | - Paolo Zucca
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, SP 1 Km 0,700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
9
|
Lopez-Fernandez M, Romero-González M, Günther A, Solari PL, Merroun ML. Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites. CHEMOSPHERE 2018; 199:351-360. [PMID: 29453061 DOI: 10.1016/j.chemosphere.2018.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions.
Collapse
Affiliation(s)
| | | | - Alix Günther
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Pier L Solari
- MARS Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
10
|
Chen H, Chen QS, Huang B, Wang SW, Wang LY. High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front Microbiol 2017; 7:2106. [PMID: 28111567 PMCID: PMC5216025 DOI: 10.3389/fmicb.2016.02106] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Collapse
Affiliation(s)
- Daniel Puyol
- Group of Chemical and Environmental Engineering, School of Experimental Sciences and Technology, King Juan Carlos UniversityMostoles, Spain
| | - Damien J. Batstone
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- CRC for Water Sensitive Cities, ClaytonVIC, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- CRC for Water Sensitive Cities, ClaytonVIC, Australia
| | - Sergi Astals
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
| | - Miriam Peces
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, University of Queensland, BrisbaneQLD, Australia
| | - Jens O. Krömer
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- Centre for Microbial Electrochemical Systems, University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
12
|
Chen C, Wang J. Uranium removal by novel graphene oxide-immobilized Saccharomyces cerevisiae gel beads. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 162-163:134-145. [PMID: 27235633 DOI: 10.1016/j.jenvrad.2016.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 05/27/2023]
Abstract
To evaluate its ability to absorb dissolved uranium (VI), the waste biomass of Saccharomyces cerevisiae was immobilized using different agents, including Ca-alginate (Ca-SA), Ca-alginate with graphene oxide (GO), polyvinyl alcohol (PVA, 5% or 10%, w/v)-SA-GO in CaCl2-boric acid solution. The experimental results showed that graphene oxide at 0.01% (w/v) could enhance the performance of the immobilized cells. The yeast gel beads prepared with 5% PVA-1% SA-2% yeast-0.01% GO-2% CaCl2-saturated boric acid (4#) generally showed the better physical-chemical properties such as higher tolerance to the unfavorable environmental conditions. Moreover, the 4# gel beads exhibited more stable capacity for U(VI) sorption and desorption at various conditions, such as pH in the range of 3-9. A pseudo second-order kinetic model could describe the kinetics of U(VI) sorption onto the 4# gel beads (R2 = 0.96). The Langmuir, Freundlich, Tempkin and Sips models could be used to describe U(VI) sorption by the 4# gel beads, with the R2 being 0.90, 0.83, 0.96, 0.97, respectively. The Sips maximum capacity of 4# gel beads was 24.4 mg U/g dry weight. The desorption efficiency of U(VI) adsorbed onto the 4# gel beads was 91%, 73% and 40% by 0.1 M HNO3, 0.1 M HCl and 0.1 M NaOH, respectively. However, the 4# gel beads exhibited lower U(VI) sorption capacity than the raw yeast cell (Sips maximum capacity of 35.6 mg U/g). The immobilized Saccharomyces cerevisiae using SA, PVA and/or GO showed obvious changes in the molecular vibration of functional groups such as carboxyl, amide and hydroxyl groups compared with the raw yeast cells, according to FTIR analysis. The SEM-EDX analysis showed that U(VI) was adsorbed unevenly on the cellular surface. Carboxyl and hydroxyl groups may be involved in U(VI) binding by yeast cells.
Collapse
Affiliation(s)
- Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
13
|
Yang C, Pei S, Chen B, Ye L, Yu H, Hu S. Density functional theory investigations on the binding modes of amidoximes with uranyl ions. Dalton Trans 2016; 45:3120-9. [DOI: 10.1039/c5dt04645a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
η1-O of tautomerized amidoximes and η1-O/η2-N–O of anionic amidoximes are all plausible coordination modes for amidoximes in ligating uranyl ions.
Collapse
Affiliation(s)
- Chuting Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
- Institute of Nuclear Physics and Chemistry
| | - Shuqi Pei
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
- Department of Polymer Science and Engineering
| | - Baihua Chen
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang 621900
- China
| | - Lina Ye
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | - Haizhu Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang 621900
- China
| |
Collapse
|