1
|
Possibilities of Uranium Deposit Kuriskova Mining and Its Influence on the Energy Potential of Slovakia from Own Resources. ENERGIES 2020. [DOI: 10.3390/en13164209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Uranium is one of the strategic minerals used mainly in energetics. The main purpose of uranium mining is to achieve maximum production to meet the rapidly growing demand for energies. It needs to become aware that technological progress in mining processes could significantly reduce the negative impacts associated with environmental, economic, and social risks. Uranium mining is one of the most controversial topics. It is dealt with by many experts and scientists around the world. Various methods and technologies of uranium mining are encountered in professional journals, as well as political or socio-economic decisions based on the impact and importance of the energy potential of uranium deposits, or the environmental impacts of uranium mining. The deposit of Kuriskova is one of the most perspective deposits not only in Slovakia but also in the world. The deposit is located near the town of Kosice (with near 240,000 inhabitants) and near the recreational area of Jahodna in the east of the Slovak Republic. The analysis and determination of the energy potential of the deposit of Kuriskova shows that uranium reserves from this deposit would be able to fully cover the needs for nuclear power plants for the production of nuclear fuel, in the Slovak Republic, even in the longer term. With the above-mentioned energy potential of the deposit of Kuriskova at the level of 600 TWh, nuclear power plants in the Slovak Republic are able to be supplied with raw materials from the deposit of Kuriskova for about 40 years with the current amount of electricity produced (approx. 15 TWh). Therefore, for the purposes of this research, a proposal for the extraction of uranium reserves at the deposit of Kuriskova was made. Based on it, it is possible to determine the amount of recoverable uranium reserves from the deposit. A methodology has been determined with mining this proposal, which takes into account the basic criteria of uranium deposit mining, which was used for the selection of a suitable mining technology for the uranium deposit of Kuriskova.
Collapse
|
2
|
Geological Risk Calculation through Probability of Success (PoS), Applied to Radioactive Waste Disposal in Deep Wells: A Conceptual Study in the Pre-Neogene Basement in the Northern Croatia. Processes (Basel) 2020. [DOI: 10.3390/pr8070755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The basic principles of geological risk calculation through probability of success (PoS) are mostly applied to numerical estimation of additional hydrocarbon existence in proven reservoirs or potential hydrocarbon discoveries in selected geological regional subsurface volumes. It can be adapted and validated for a comprehensive input dataset collected in the selected petroleum province, by dividing up geological events into several probability categories and classes. Such methodology has been widely developed in the last decades in the Croatian subsurface—mostly in the Croatian Pannonian Basin System (CPBS). Through the adaptation of geological categories, it was also applied in hybrid, i.e., stochastic, models developed in the CPBS (Drava Depression), mostly for inclusion of porosity values. As the robustness of this methodology is very high, it was also modified to estimate the influence of water-flooding in increasing oil recovery in some proven Neogene sandstone reservoirs in the CPBS (Sava Depression). This new modification is presented to be applied to geological risk calculation, intending to assess the safety of geological environment storage in deep wells, where spent nuclear fuel (SPN) would be disposed, a subject of great importance. The conceptual study encompassed the magmatic and metamorphic rocks in the pre-Neogene basement of the CPBS, intended to be used for such purpose. Regionally distributed lithologies are considered for nuclear waste disposal purpose, in order to detect the safest ones, considering petrophysical values, water saturation, recent weathering and tectonic activity.
Collapse
|
3
|
Direct Shear Experimental Study on the Mobilized Dilation Behavior of Granite in Alxa Candidate Area for High-Level Radioactive Waste Disposal. ENERGIES 2019. [DOI: 10.3390/en13010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dilation behavior is of great importance for reasonable modeling of the stability of the host rock of the repository for high-level radioactive waste disposal. It is a suitable method for carrying out direct shear experiments to analyze the dilation behavior of rock with well understood physical meanings. Based on a series of direct shear experiments on granite samples from the Alxa candidate area under different normal stresses, the shear stress‒shear strain and shear stress‒normal strain relations have been studied in detail. Five typical stages have been divided associated with the fracturing process and deformation behaviors of the granite samples during the experimental process, and the method to determine the typical stress thresholds has been proposed. It has also been found that the increasing normal stress may reduce the maximum dilation angle, and when the normal stress is relatively lower, the negative dilation angle may occur during the post-peak stage. According to the data collected from the direct shear tests, an empirical model of the mobilized dilation angle dependent on normal stress and plastic shear strain is proposed. This mobilized dilation angle has clear physical meanings and can be used in plastic constitutive models of the host rock of the repository, and this analysis can also be put forward to other types of geomechanical problems, including the deformation behaviors related to landslide, earthquake, and so on.
Collapse
|
4
|
Fuks L, Maskalchuk L, Herdzik-Koniecko I, Leontieva T. Clay-salt slimes of the “Belaruskali” - novel sorbents for management of liquid radioactive wastes and decontamination of environmental water streams. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06449-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Krajňák A, Viglašová E, Galamboš M, Krivosudský L. Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5590-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Pipíška M, Richveisová BM, Frišták V, Horník M, Remenárová L, Stiller R, Soja G. Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5043-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|