Li S, Chu T. Improving tumor/muscle and tumor/blood ratios of
99mTc-labeled nitroimidazole propylene amine oxime (PnAO) complexes with ethylene glycol linkers.
Bioorg Med Chem Lett 2023;
82:129154. [PMID:
36736496 DOI:
10.1016/j.bmcl.2023.129154]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Three nitroimidazole propylene amine oxime (PnAO) derivatives with different lengths of ethylene glycol chain were synthesized and radiolabeled with 99mTc. The radiochemical purities of three 99mTc-labeled complexes, oxo[[6,6,12,12-tetramethyl-1,17-bis(2-nitro-1H-imidazol-1-yl)-3,15-dioxa-7,11-diazaheptadecane-5, 13-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O1), oxo[[9,9,15,15-tetramethyl-1,23-bis(2-nitro-1H-imidazol-1-yl)-3,6,18,21-tetraoxa-10, 14-diazatricosane-8,16-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O2) and oxo[[15,15,21,21-tetramethyl-1,35-bis(2-nitro-1H-imidazol-1-yl)-3,6,9,12,24,27,30,33-octaoxa-16,20-diazapentatriacontane-14,22-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O4), were above 90%, and they were all stable both in vitro and in vivo. The hypoxia/normoxia uptake ratios of the three complexes were 2.92 ± 0.61, 2.63 ± 0.64 and 2.29 ± 0.67 in S180 cellular uptake assay (4 h). All of these complexes presented good hypoxia selectivity. The results of biodistribution studies in S180 tumor-bearing mice revealed that the tumor/muscle (T/M) ratios (7.20 ± 2.37, 7.19 ± 1.75, 5.56 ± 1.10) and tumor/blood (T/B) ratios (1.66 ± 0.34, 1.73 ± 0.25, 2.13 ± 0.19) at 4 h of three complexes were significantly higher than those of 99mTc-2P2 (3.24 ± 0.65, 0.81 ± 0.34) without the ethylene glycol chains. Among them, 99mTc-2P2O4 had the best T/B ratio. The new complexes have higher tumor/blood and tumor/muscle ratios by adding suitable length of ethylene glycol chain. It is helpful for the design and optimization of hypoxic imaging agents.
Collapse