1
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
2
|
Absorption, translocation, and effects of Bt Cry1Ac peptides from transgenic cotton to the intercrops and soil functional bacteria. Sci Rep 2020; 10:17294. [PMID: 33057018 PMCID: PMC7557920 DOI: 10.1038/s41598-020-73375-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Insecticidal proteins encoded by the truncated genes from Bacillus thuringiensis (Bt) in transgenic crops are released into soil mainly through root exudate and crop residues. In the present study, Bt Cry1Ac protein was hydrolyzed by pronase that was secreted by the soil bacterium Streptomyces griseus. Six peptides were identified as the products of enzymatic hydrolysis by nano liquid chromatography tandem mass spectrometry (LC-MS/MS). One of the six peptides was labeled with radioactive isotope iodine-125 and then purified. The 125I-peptide solution was irrigated to the rhizosphere soil of watermelon seedlings (Citrullus lanatus L.) and wheat seedlings (Triticum aestivum L.), which the two crops usually intercrop with cotton in China. Detection of radioactivity in both plant tissues within one hour proved adsorption, uptake and translocation of the peptide into watermelon and wheat seedlings. Three of the identified peptides were sprayed onto the seedling leaves of watermelon, wheat and maize (Zea mays L.) in the field or the growth chamber. No significant effects on plant growth were observed. These peptides also did not affect growth of organic phosphate-dissolving, nitrogen-fixing, and potassium-dissolving bacteria in the culture. This study provides a new view of GMO risk assessment methodology.
Collapse
|
3
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
4
|
Shim HE, Mushtaq S, Song L, Lee CH, Lee H, Jeon J. Development of a new thiol-reactive prosthetic group for site-specific labeling of biomolecules with radioactive iodine. Bioorg Med Chem Lett 2018; 28:2875-2878. [PMID: 30049578 DOI: 10.1016/j.bmcl.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
In this report, we describe the radiosynthesis of a new thiol-targeting prosthetic group for efficient radioactive iodine labeling of biomolecules. Radioiodination using the precursor 3 was performed to obtain 125I-labeled tetrazole 4b with high radiochemical yield (73%) and radiochemical purity. Using the radiolabeled 4b, a single free cysteine containing peptide and human serum albumin were labeled with 125I in modest-to-good radiochemical yields (65-99%) under mildly reactive conditions. A biodistribution study of [125I]7 in normal ICR mice exhibited lower thyroid uptake values than those of 125I-labeled human serum albumin prepared via a traditional radiolabeling method. Thus, [125I]7 could be employed as an effective radiotracer for molecular imaging and biodistribution studies. The results clearly demonstrate that 4b has the potential to be effectively implemented as a prosthetic group in the preparation of radiolabeled biomolecules.
Collapse
Affiliation(s)
- Ha Eun Shim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Lee Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Chang Heon Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Hyosun Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongho Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Radiosynthesis and preliminary biological evaluation of 99mTc-labeled 2-methyl-2-pentylmalonic acid as an apoptosis imaging agent. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Fürjes G, Lelesz B, Tóth GK, Arday A, Szilvássy Z, Varga A, Berényi E, Németh J. Comparative distribution of somatostatin and thrittene bioactive peptides in the central nervous system of rat measured by radioimmunoassay. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-016-5132-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Lelesz B, Szilvássy Z, Tóth GK, Tóth A, Enyedi A, Felszeghy E, Varga A, Juhász B, Németh J. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|