1
|
Matsuda S, Yokoyama K, Yaita T, Kobayashi T, Kaneta Y, Simonnet M, Sekiguchi T, Honda M, Shimojo K, Doi R, Nakashima N. Marking actinides for separation: Resonance-enhanced multiphoton charge transfer in actinide complexes. SCIENCE ADVANCES 2022; 8:eabn1991. [PMID: 35584222 PMCID: PMC9116592 DOI: 10.1126/sciadv.abn1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Precise separation and purification of f-block elements are important and challenging especially for the reduction of nuclear waste and the recycling of rare metals but are practically difficult mainly because of their chemical similarity. A promising way to overcome this difficulty is controlling their oxidation state by nonchemical processes. Here, we show resonance-enhanced multiphoton charge transfer in actinide complexes, which leads to element-specific control of their oxidation states owing to the distinct electronic spectra arising from resonant transitions between f orbitals. We observed oxidation of trivalent americium in nitric acid. In addition, we found that the coordination of nitrates is essential for promoting the oxidation reaction, which is the first finding ever relevant to the primary process of photoexcitation via resonant transitions of f-block elements. The resonance-enhanced photochemical process could be used in the nuclear waste management, as it would facilitate the mutual separation of actinides, such as americium and curium.
Collapse
Affiliation(s)
- Shohei Matsuda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Keiichi Yokoyama
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tsuyoshi Yaita
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tohru Kobayashi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yui Kaneta
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Marie Simonnet
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Tetsuhiro Sekiguchi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Mitsunori Honda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Kojiro Shimojo
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Reisuke Doi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nobuaki Nakashima
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Institute for Laser Technology, 1-8-4 Utsubo-honmachi, Nishi-ku, Osaka 550-0004, Japan
| |
Collapse
|
2
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorg Chem 2022; 61:6110-6119. [PMID: 35416038 DOI: 10.1021/acs.inorgchem.2c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing ligands with efficient actinide (An(III))/lanthanide (Ln(III)) separation performance is still one of the key issues for the disposal of accumulated radioactive waste and the recovery of minor actinides. Recently, the hydrophilic ligands as promising extractants in the innovative Selective ActiNide Extraction (i-SANEX) process show excellent selectivity for Am(III) over Eu(III), such as hydroxylated-based ligands. In this work, we investigated the selective back-extraction toward Am(III) over Eu(III) with three hydrophilic hydroxylated triazolyl-based ligands (the skeleton of pyridine La, bipyridine Lb, and phenanthroline Lc) using scalar-relativistic density functional theory. The properties of three hydrophilic hydroxylated ligands and the coordination structures, bonding nature, and thermodynamic properties of the Am(III) and Eu(III) complexes with three ligands have been evaluated using multiple theoretical methods. The results of molecular orbitals (MOs), quantum theory of atoms in molecules (QTAIMs), and natural bond orbital (NBO) reveal that Am-N bonds possess more covalent character compared to Eu-N bonds. The thermodynamic results indicate that the complexing ability of Lb and Lc with metal ions is almost the same, which is stronger than that of La. However, La has the best Am(III)/Eu(III) selectivity among three ligands, which is attributed to the largest difference in covalency between Am-Ntrzl and Eu-Ntrzl bonds in MLa(NO3)3. This work provides an in-depth understanding of the preferential selectivity of the hydrophilic hydroxylated ligands with An(III) over Ln(III) and also provides theoretical support for designing potential hydrophilic ligands with excellent separation performance of Am(III)/Eu(III).
Collapse
Affiliation(s)
- Zi-Rong Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorg Chem 2021; 60:16409-16419. [PMID: 34632757 DOI: 10.1021/acs.inorgchem.1c02256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we focused on the separation of Am(III)/Eu(III) with four hydrophilic sulfonated ligands (L) based on the framework of phenanthroline and bipyridine through scalar relativistic density functional theory. We studied the electronic structures of [ML(NO3)3] (M = Am, Eu) complexes and the bonding nature between metal and ligands as well as evaluated the separation selectivity of Am(III)/Eu(III). The tetrasulfonated ligand L2 with a bipyridine framework has the strongest complexing ability for metal ions probably because of the better solubility and flexible skeleton. The disulfonated ligand L1 has the highest Am(III)/Eu(III) selectivity, which is attributed to the covalent difference between the Am-N and Eu-N bonds based on the quantum theory of atoms in the molecule analysis. Thermodynamic analysis shows that the four hydrophilic sulfonated ligands are more selective toward Am(III) over Eu(III). In addition, these hydrophilic sulfonated ligands show better complexing ability and Am(III)/Eu(III) selectivity compared to the corresponding hydrophobic nonsulfonated ones. This work provides theoretical support for the separation of Am(III)/Eu(III) using hydrophilic sulfonated ligands.
Collapse
Affiliation(s)
- Zi-Rong Ye
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Vu TH, Simonin JP, Rollet AL, Egberink RJM, Verboom W, Gullo MC, Casnati A. Liquid/Liquid Extraction Kinetics of Eu(III) and Am(III) by Extractants Designed for the Industrial Reprocessing of Nuclear Wastes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. H. Vu
- CNRS, Laboratoire PHENIX, Campus P.M. Curie, Sorbonne Universités, F-75005 Paris, France
| | - Jean-Pierre Simonin
- CNRS, Laboratoire PHENIX, Campus P.M. Curie, Sorbonne Universités, F-75005 Paris, France
| | - A. L. Rollet
- CNRS, Laboratoire PHENIX, Campus P.M. Curie, Sorbonne Universités, F-75005 Paris, France
| | - R. J. M. Egberink
- Mesa+ Institute for Nanotechnology, Laboratory of Molecular Nanofabrication, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. Verboom
- Mesa+ Institute for Nanotechnology, Laboratory of Molecular Nanofabrication, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - M. C. Gullo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, I-43124 Parma, Italy
| | - A. Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, I-43124 Parma, Italy
| |
Collapse
|
5
|
Steczek Ł, Narbutt J, Charbonnel MC, Moisy P. Solvent Extraction Investigations on Pu(IV) and Th(IV) Complexes with Hydrophilic SO3-Ph-BTP and SO3-Ph-BTBP Ligands. SOLVENT EXTRACTION AND ION EXCHANGE 2019. [DOI: 10.1080/07366299.2019.1639366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Łukasz Steczek
- Centre for Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Nuclear Energy Division, Research Department of Mining and Fuel Recycling ProCesses, CEA, Bagnols sur Cèze, France
| | - Jerzy Narbutt
- Centre for Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Marie-Christine Charbonnel
- Nuclear Energy Division, Research Department of Mining and Fuel Recycling ProCesses, CEA, Bagnols sur Cèze, France
| | - Philippe Moisy
- Nuclear Energy Division, Research Department of Mining and Fuel Recycling ProCesses, CEA, Bagnols sur Cèze, France
| |
Collapse
|
6
|
Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3064] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Separation of trivalent actinide (An) and lanthanide (Ln) elements is one of the burning topics in the back end of the nuclear fuel cycle due to the similarity in their chemical behaviour. A significant amount of research is being carried out worldwide to develop suitable ligands for the separation of the trivalent actinides and lanthanides. Some of the research groups are engaged in continuous improvement of the di-ethylene-triamine-penta acetic acid (DTPA) based Ln/An separation method, whereas extensive research is going on for the development of the lipophilic and hydrophilic ‘N’ donor heteropolycyclic ligands as the actinide selective ligand. A number of ‘S’ donor ligands are also explored for the Ln/An separation. In the present review, we made an attempt to highlight various separation processes based on soft donor ligands developed for Ln/An separations. Beside the conventional solvent extraction processes, separation possibilities membrane based and solid phase extraction techniques are evaluated for the Ln/An separation and are compiled in the present review.
Collapse
|