1
|
Gong H, Lin X, Xie Y, Liu L, Zhou J, Liao H, Shang R, Luo X. A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124151. [PMID: 33032091 DOI: 10.1016/j.jhazmat.2020.124151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Premna microphylla turcz leaves (PMTL) is a resource-rich, biodegradable, renewable biomass. Here, a microsphere adsorbent was prepared from PMTL by a self-crosslinking method without any addition of chemical cross-linking agent, and characterized by SEM, FTIR, and XPS. The influence of preparation methods and conditions on the properties of the microspheres was studied and the self-crosslinking mechanism was analyzed. The effects of temperature, pH, contact time, uranium concentration, and adsorbent dosage on its adsorption performance toward to uranium were systematically explored. The results showed that PMTL endogenous pectin binding with endogenous Ca2+, Mg2+ and other metal ions to form an 'egg box' structure might be the mechanism of its self-crosslinking to form microspheres. The adsorption isotherms fitted well by the Freundlich model and the experimental maximum adsorption capacity of microspheres was 346.65 mg·g-1 at pH of 5, and kinetics data correlated well with the pseudo-second order model. The adsorption mechanism might be the coordination bonding between the uranium and oxygen-containing groups (hydroxyl and carboxyl groups), and the ion exchange between the uranium and metal ions (mainly Ca2+ and Mg2+). The PMTL microspheres are promising in treating uranium-containing wastewater in a more cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Hongying Gong
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Xiaoyan Lin
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China.
| | - Yu Xie
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Lan Liu
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Hui Liao
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuegang Luo
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| |
Collapse
|
2
|
Acylation modification of konjac glucomannan and its adsorption of Fe (Ⅲ) ion. Carbohydr Res 2020; 497:108133. [PMID: 32891933 DOI: 10.1016/j.carres.2020.108133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022]
Abstract
A biodegradable adsorbent, modified konjac glucomannan (MKGM), was prepared by konjac glucomannan (KGM) acylated with phthalic anhydride catalyzed using concentrated sulfuric acid. The modified conditions such as reaction temperature, mass ratio of phthalic anhydride to KGM, catalyst dosage and reaction time were investigated, respectively. MKGM exhibited preferable adsorption performance for the removal of Fe (Ⅲ) ion. The adsorption behavior was discussed using the Langmuir and Freundlich isotherm models. The results showed that the Freundlich linear model was suitable for describing the adsorption process of Fe (Ⅲ). The maximum adsorption capacity of MKGM for Fe (Ⅲ) ion was 31.87 mg g-1 at 298 K. The kinetics studies suggested that adsorption process followed the pseudo-second-order model and the adsorption process was mainly controlled by both surface reactivity and intra-particle diffusion. Together with the evaluation of the thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes, the results indicated that the adsorption process of Fe (Ⅲ) was endothermic, feasible, and spontaneous in nature. Hence, as a bioadsorbent, the MKGM has a promising potential for the removal of Fe (Ⅲ) ion from aqueous solutions.
Collapse
|
3
|
Carboxymethyl konjac glucomannan mechanically reinforcing gellan gum microspheres for uranium removal. Int J Biol Macromol 2019; 145:535-546. [PMID: 31883902 DOI: 10.1016/j.ijbiomac.2019.12.188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Biosorbents have been a promising adsorbent to remove uranium while their poor mechanical properties prevent them from being widely used in practice. In this study, carboxymethyl konjac glucomannan (CMKGM) was incorporated to gellan gum to form a double-network gel micro spheres (CMKGM/GG-Al) for uranium removal with its mechanical strength fairly being reinforced. The compressive strength of the CMKGM/GG-Al microspheres was about 6 times than that of GG-Ca microspheres we prepared before while the adsorption capacity still be at a better value with the fitting maximum adsorption capacity being of 97.94 mg/g. Its uranium adsorption properties were investigated by considering the influence of pH, the adsorbent dosage, temperature, initial uranium concentration, time and coexisting ions. The adsorption mechanism was also investigated according to the SEM, EDX, FT-IR and XPS data analysis. The isotherm equilibrium data which were best fitted with Langmuir model and the kinetics data which were best fitted with pseudo-second-order model. It was inferred that the adsorption process was mainly the ion-exchange and the coordination with hydroxyl groups on the adsorbent surface and the adsorption process was endothermic and spontaneous. The CMKGM/GG-Al microspheres prepared in this study would be more conducive to practical application for uranium removal.
Collapse
|
4
|
Liang L, Lin X, Sun S, Chen Y, Shang R, Luo X. Stereoscopic porous gellan gum-based microspheres as high performance adsorbents for U(VI) removal. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6323-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Adsorption of phosphorus from slaughterhouse wastewater by carboxymethyl konjac glucomannan loaded with lanthanum. Int J Biol Macromol 2018; 119:105-115. [DOI: 10.1016/j.ijbiomac.2018.07.140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
|