1
|
Sharma JK, Bayard BJ, Zosel N, Ali SS, Holzer N, Nesterov VN, Karr PA, D'Souza F, Poddutoori PK. Hypervalent Phosphorus(V) Porphyrins with meso-Methoxyphenyl Substituents: Significance of the Number and Position of Methoxy Groups in Promoting Intramolecular Charge Transfer. Inorg Chem 2022; 61:16573-16585. [PMID: 36223643 DOI: 10.1021/acs.inorgchem.2c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the photophysical and redox properties as a function of meso-aryl units, a series of hypervalent phosphorus(V) porphyrins, PP(OMe)2·PF6, PMP(OMe)2·PF6, PDMP(OMe)2·PF6, P345TMP(OMe)2·PF6, and P246TMP(OMe)2·PF6, with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), 3,4,5-trimethoxyphenyl (345TMP), and 2,4,6-trimethoxyphenyl (246TMP) units, respectively, have been synthesized. The P(+5) in the cavity makes the porphyrin ring electron-poor, whereas the methoxy groups make the meso-phenyl rings electron-rich. The presence of electron-rich and electron-poor portions within the porphyrin molecule promoted an intramolecular charge transfer (ICT). Also, the study suggests that the ICT depends on the number and position of the methoxy groups. The ICT is more prominent in m-methoxy-substituted phosphorus(V) porphyrins (PDMP(OMe)2.PF6, P345TMP(OMe)2·PF6) and almost no ICT was found in no-methoxy, o-methoxy, and/or p-methoxy phosphorus(V) porphyrins (PP(OMe)2·PF6, PMP(OMe)2·PF6, P246TMP(OMe)2·PF6). Transient absorption studies indicate that the ICT takes place on the picosecond time scale. The most striking results come from P246TMP(OMe)2·PF6, where each phenyl ring carries three methoxy units, like the P345TMP(OMe)2·PF6, but it failed to induce the ICT process. Electrochemical studies and time-dependent density functional theory (TD-DFT) calculations were used to support the experimental results. This study extensively explores why and how slight variations in meso-aryl substitutions lead to intricate changes in the photophysical and redox properties of phosphorus(V) porphyrins.
Collapse
Affiliation(s)
- Jatan K Sharma
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Brandon J Bayard
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Nick Zosel
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Syeda S Ali
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Noah Holzer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Prashanth K Poddutoori
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Moghassemi S, Dadashzadeh A, de Azevedo RB, Amorim CA. Secure transplantation by tissue purging using photodynamic therapy to eradicate malignant cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112546. [PMID: 36029759 DOI: 10.1016/j.jphotobiol.2022.112546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 12/17/2022]
Abstract
The field of photodynamic therapy (PDT) for treating various malignant neoplasms has been given researchers' attention due to its ability to be a selective and minimally invasive cancer therapy strategy. The possibility of tumor cell infection and hence high recurrence rates in cancer patients tends to restrict autologous transplantation. So, the photodynamic tissue purging process, which consists of selective photoinactivation of the malignant cells in the graft, is defined as a compromising strategy to purify contaminated tissues before transplantation. In this strategy, the direct malignant cells' death results from the reactive oxygen species (ROS) generation through the activation of a photosensitizer (PS) by light exposure in the presence of oxygen. Since new PS generations can effectively penetrate the tissue, PDT could be an ideal ex vivo tissue purging protocol that eradicates cancer cells derived from various malignancies. The challenge is that the applied pharmacologic ex vivo tissue purging should efficiently induce tumor cells with minor influence on normal tissue cells. This review aims to provide an overview of the current status of the most effective PDT strategies and PS development concerning their potential application in ex vivo purging before hematopoietic stem cell or ovarian tissue transplantation.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF, Brazil
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Porphyrins as Chelating Agents for Molecular Imaging in Nuclear Medicine. Molecules 2022; 27:molecules27103311. [PMID: 35630788 PMCID: PMC9148099 DOI: 10.3390/molecules27103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Porphyrin ligands, showing a significant affinity for cancer cells, also have the ability to chelate metallic radioisotopes to form potential diagnostic radiopharmaceuticals. They can be applied in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) to evaluate metabolic changes in the human body for tumor diagnostics. The aim of this paper is to present a short overview of the main metallic radionuclides complexed by porphyrin ligands and used in these techniques. These chelation reactions are discussed in terms of the complexation conditions and kinetics and the complex stability.
Collapse
|
6
|
Price TW, Yap SY, Gillet R, Savoie H, Charbonnière LJ, Boyle RW, Nonat AM, Stasiuk GJ. Evaluation of a Bispidine‐Based Chelator for Gallium‐68 and of the Porphyrin Conjugate as PET/PDT Theranostic Agent. Chemistry 2020; 26:7602-7608. [DOI: 10.1002/chem.201905776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas W. Price
- School of Life SciencesFaculty of Health SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Positron Emission Tomography Research CenterUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College London Cottingham Road London SE1 7EH UK
| | - Steven Y. Yap
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Raphaël Gillet
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Huguette Savoie
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Loïc J. Charbonnière
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Ross W. Boyle
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Aline M. Nonat
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Graeme J. Stasiuk
- School of Life SciencesFaculty of Health SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Positron Emission Tomography Research CenterUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College London Cottingham Road London SE1 7EH UK
| |
Collapse
|