Abdel Maksoud MIA, Murad GA, Zaher WF, Hassan HS. Adsorption and separation of Cs(I) and Ba(II) from aqueous solution using zinc ferrite-humic acid nanocomposite.
Sci Rep 2023;
13:5856. [PMID:
37041256 PMCID:
PMC10090073 DOI:
10.1038/s41598-023-32996-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Reclaimable adsorbents have an essential role in removing radionuclides from waste streams. Herein, zinc ferrite-humic acid ZFO/HA nanocomposite was synthesized for effective cesium and barium adsorption. The prepared ZFO/HA nanocomposite was analyzed using analytical techniques including XRD, FTIR, EDX, and SEM. From kinetic studies, the mechanism adsorption process follows the second model. The isotherm studies clarified that the Langmuir model fit the adsorption of both ions onto the prepared sample, and the monolayer capacities are equal to 63.33 mg/g and 42.55 mg/g for Ba(II) and Cs(I), respectively. The temperature parameter was also studied, and the adsorption reaction was spontaneous and endothermic. The maximum separation between two ions was achieved at pH 5 (αCs/Ba = 3.3).
Collapse