1
|
Deng Y, Jiang S, Yan Z, Chu Y, Wu W, Xiao H. Fluorescent Eu-MOF@nanocellulose-based nanopaper for rapid and sensitive detection of uranium (Ⅵ). Anal Chim Acta 2024; 1292:342211. [PMID: 38309843 DOI: 10.1016/j.aca.2024.342211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.
Collapse
Affiliation(s)
- Yuqing Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
2
|
Selim AA, Abdallah AB, Awad FS, Khalifa ME, Salem Molouk AF. Electrochemical sensor based on amine- and thiol-modified multi-walled carbon nanotubes for sensitive and selective determination of uranyl ions in real water samples. RSC Adv 2023; 13:31141-31150. [PMID: 37881759 PMCID: PMC10594082 DOI: 10.1039/d3ra05374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Novel selective and sensitive electrochemical sensors based on the modification of a carbon paste electrode (CPE) with novel amine- and thiol-functionalized multi-walled carbon nanotubes (MWCNT) have been developed for the detection and monitoring of uranyl ions in different real water samples. Multiwalled carbon nanotubes were grafted with 2-aminothiazole (AT/MWCNT) and melamine thiourea (MT/MWCNT) via an amidation reaction in the presence of dicyclohexyl carbodiimide (DCC) as a coupling agent. This modification for multiwalled carbon nanotubes has never been reported before. The amine and thiol groups were considered to be promising functional groups due to their high affinity toward coordination with uranyl ions. The modified multi-walled carbon nanotubes were characterized using different analytical techniques including FTIR, SEM, XPS, and elemental analysis. Subsequently, 10 wt% MT/MWCNT was mixed with 60 wt% graphite powder in the presence of 30 wt% paraffin oil to obtain a modified carbon paste electrode (MT/MWCNT/CPE). The electrochemical behavior and applications of the prepared sensors were examined using cyclic voltammetry, differential pulse anodic stripping voltammetry, and electrochemical impedance spectroscopy. The MT/MWCNT/CPE sensor exhibited a good linearity for UO22+ in the concentration range of 5.0 × 10-3 to 1.0 × 10-10 mol L-1 with low limits of detection (LOD = 2.1 × 10-11 mol L-1) and quantification (LOQ = 7 × 10-11 mol L-1). In addition, high precision (RSD = 2.7%), good reproducibility (RSD = 2.1%), and high stability (six weeks) were displayed. Finally, MT-MWCNT@CPE was successfully utilized to measure the uranyl ions in an actual water sample with excellent recoveries (97.8-99.3%). These results demonstrate that MT-MWCNT@CPE possesses appropriate accuracy and is appropriate for environmental applications.
Collapse
Affiliation(s)
- Amina A Selim
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - Ahmed Fathi Salem Molouk
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| |
Collapse
|
3
|
Liu B, Cui W, Zhou J, Wang H. A Novel Triphenylamine-Based Flavonoid Fluorescent Probe with High Selectivity for Uranyl in Acid and High Water Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186987. [PMID: 36146333 PMCID: PMC9503699 DOI: 10.3390/s22186987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 05/14/2023]
Abstract
Developing a fluorescent probe for UO22+, which is resistant to interference from other ions such as Cu2+ and can be applied in acidic and high-water systems, has been a major challenge. In this study, a "turn-off" fluorescent probe for triamine-modified flavonoid derivatives, 2-triphenylamine-3-hydroxy-4H-chromen-4-one (abbreviated to HTPAF), was synthesized. In the solvent system of dimethyl sulfoxide:H2O (abbreviated to DMSO:H2O) (v/v = 5:95 pH = 4.5), the HTPAF solution was excited with 364 nm light and showed a strong fluorescence emission peak at 474 nm with a Stokes shift of 110 nm. After the addition of UO22+, the fluorescence at 474 nm was quenched. More importantly, there was no interference in the presence of metal ions (Pb2+, Cd2+, Cr3+, Fe3+, Co2+, Th4+, La3+, etc.), especially Cu2+ and Al3+. It is worth noting that the theoretical model for the binding of UO22+ to HTPAF was derived by more detailed density functional theory (DFT) calculations in this study, while the coordination mode was further verified using HRMS, FT-IR and 1HNMR, demonstrating a coordination ratio of 1:2. In addition, the corresponding photo-induced electron transfer (PET) fluorescence quenching mechanism was also proposed.
Collapse
Affiliation(s)
- Bing Liu
- Library, University of South China, Hengyang 421001, China
| | - Wenbin Cui
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jianliang Zhou
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: or
| |
Collapse
|
4
|
He LQ, Wang ZM, Li YJ, Yang J, Liao LF, Xiao XL, Liu Y. A Novel Electrochemical Sensor Modified with a Computer-Simulative Magnetic Ion-Imprinted Membrane for Identification of Uranyl Ion. SENSORS 2022; 22:s22124410. [PMID: 35746190 PMCID: PMC9227270 DOI: 10.3390/s22124410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023]
Abstract
In this paper, a novel ion-imprinted electrochemical sensor modified with magnetic nanomaterial Fe3O4@SiO2 was established for the high sensitivity and selectivity determination of UO22+ in the environment. Density functional theory (DFT) was employed to investigate the interaction between templates and binding ligands to screen out suitable functional binding ligand for the reasonable design of the ion imprinted sensors. The MIIP/MCPE (magnetic ion imprinted membrane/magnetic carbon paste electrode) modified with Fe3O4@SiO2 exhibited a strong response current and high sensitivity toward uranyl ion comparison with the bare carbon paste electrodes. Meanwhile, the MCPE was fabricated simultaneously under the action of strong magnetic adsorption, and the ion imprinted membrane can be adsorbed stably on the electrode surface, handling the problem that the imprinted membrane was easy to fall off during the process of experimental determination and elution. Based on the uranyl ion imprinting network, differential pulse voltammetry (DPV) was adopted for the detection technology to realize the electrochemical reduction of uranyl ions, which improved the selectivity of the sensor. Thereafter, uranyl ions were detected in the linear concentration range of 1.0 × 10−9 mol L−1 to 2.0 × 10−7 mol L−1, with the detection and quantification limit of 1.08 × 10−9 and 3.23 × 10−10 mol L−1, respectively. In addition, the sensor was successfully demonstrated for the determination of uranyl ions in uranium tailings soil samples and water samples with a recovery of 95% to 104%.
Collapse
Affiliation(s)
- Li-Qiong He
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
| | - Zhi-Mei Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; (Z.-M.W.); (Y.-J.L.)
| | - Yu-Jie Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; (Z.-M.W.); (Y.-J.L.)
| | - Jing Yang
- Hengyang Market Supervision Inspection and Testing Center, Hengyang 421001, China;
| | - Li-Fu Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
| | - Xi-Lin Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; (Z.-M.W.); (Y.-J.L.)
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
- State Key Laboratory of Chemo & Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Correspondence: (X.-L.X.); (Y.L.)
| | - Yong Liu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; (Z.-M.W.); (Y.-J.L.)
- Correspondence: (X.-L.X.); (Y.L.)
| |
Collapse
|
5
|
Electrochemical sensor for uranium monitoring in natural water based on poly Nile blue modified glassy carbon electrode. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05102-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Li Y, Wang Z, Liu C, Zhang D, Liao L, Xiao X. Graphene oxide modified H
4
L‐ion imprinting electrochemical sensor for the detection of uranyl ions. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujie Li
- College of Resource & Environment and Safety Engineering University of South China Hengyang City 421001 P.R. China
| | - Zhimei Wang
- College of Resource & Environment and Safety Engineering University of South China Hengyang City 421001 P.R. China
| | - Chen Liu
- College of Chemistry and Chemical Engineering Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards University of South China Hengyang City 421001 P.R. China
| | - Di Zhang
- College of Chemistry and Chemical Engineering Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards University of South China Hengyang City 421001 P.R. China
| | - Lifu Liao
- College of Chemistry and Chemical Engineering Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards University of South China Hengyang City 421001 P.R. China
| | - Xilin Xiao
- College of Resource & Environment and Safety Engineering University of South China Hengyang City 421001 P.R. China
- College of Chemistry and Chemical Engineering Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards University of South China Hengyang City 421001 P.R. China
- State Key Laboratory of Chemo & Biosensing and Chemometrics Hunan University Changsha City 410082 Hunan Province P.R. China
| |
Collapse
|
7
|
Cao X, Sun Y, Wang Y, Zhang Z, Dai Y, Liu Y, Wang Y, Liu Y. PtRu bimetallic nanoparticles embedded in MOF-derived porous carbons for efficiently electrochemical sensing of uranium. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04668-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|