1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Kordala N, Wyszkowski M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024; 29:1069. [PMID: 38474578 DOI: 10.3390/molecules29051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Zeolites, a group of minerals with unique properties, have been known for more than 250 years. However, it was the development of methods for hydrothermal synthesis of zeolites and their large-scale industrial applications (oil processing, agriculture, production of detergents and building materials, water treatment processes, etc.) that made them one of the most important materials of the 20th century, with great practical and research significance. The orderly, homogeneous crystalline and porous structure of zeolites, their susceptibility to various modifications, and their useful physicochemical properties contribute to the continuous expansion of their practical applications in both large-volume processes (ion exchange, adsorption, separation of mixture components, catalysis) and specialized ones (sensors). The following review of the knowledge available in the literature on zeolites aims to present the most important information on the properties, synthesis methods, and selected applications of this group of aluminosilicates. Special attention is given to the use of zeolites in agriculture and environmental protection.
Collapse
Affiliation(s)
- Natalia Kordala
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| | - Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| |
Collapse
|
3
|
Hamza MF, Guibal E, Althumayri K, Vincent T, Yin X, Wei Y, Li W. New Process for the Sulfonation of Algal/PEI Biosorbent for Enhancing Sr(II) Removal from Aqueous Solutions-Application to Seawater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207128. [PMID: 36296719 PMCID: PMC9611074 DOI: 10.3390/molecules27207128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023]
Abstract
Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples. The chemical modification of A*PEI triples the sorption capacity for Sr(II) at pH 4 with a removal rate of up to 7% and 58% for A*PEI and SA*PEI, respectively (with SD: 0.67 g L-1). FTIR shows the strong contribution of sulfonate groups for the functionalized sorbent (in addition to amine and carboxylic groups from the support). The sorption is endothermic (increase in sorption with temperature). The sulfonation improves thermal stability and slightly enhances textural properties. This may explain the fast kinetics (which are controlled by the pseudo-first-order rate equation). The sulfonated sorbent shows a remarkable preference for Sr(II) over competitor mono-, di-, and tri-valent metal cations. Sorption properties are weakly influenced by the excess of NaCl; this can explain the outstanding sorption properties in the treatment of seawater samples. In addition, the sulfonated sorbent shows excellent stability at recycling (for at least 5 cycles), with a loss in capacity of around 2.2%. These preliminary results show the remarkable efficiency of the sorbent for Sr(II) removal from complex solutions (this could open perspectives for the treatment of contaminated seawater samples).
Collapse
Affiliation(s)
- Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 4710030, Egypt
| | - Eric Guibal
- Polymers Composites and Hybrids, IMT—Mines Ales, F-30360 Ales, France
- Correspondence: (E.G.); (W.L.); Tel.: +33-0-466782734 (E.G.); +86-18845568076 (W.L.)
| | - Khalid Althumayri
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Thierry Vincent
- Polymers Composites and Hybrids, IMT—Mines Ales, F-30360 Ales, France
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
| | - Wenlong Li
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
- Correspondence: (E.G.); (W.L.); Tel.: +33-0-466782734 (E.G.); +86-18845568076 (W.L.)
| |
Collapse
|
4
|
Wang K, Jia B, Li Y, Sun J, Wu X. Explorations on Thermodynamic and Kinetic Performances of Various Cationic Exchange Durations for Synthetic Clinoptilolite. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082597. [PMID: 35458797 PMCID: PMC9024986 DOI: 10.3390/molecules27082597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Various cation–exchanged clinoptilolites (M–CPs, M = Li+, Cs+, Ca2+, Sr2+) were prepared, and their exchanged thermodynamic (and kinetic) properties and adsorption performances for CH4, N2, and CO2 were investigated. The results demonstrated that the relative crystallinity of M–CPS decreased with the increase of exchange times. Their chemisorbed water weight loss gradually increased with the increasing exchange times, except that of Cs–x–CP. The ΔrGmθ values of exchange process of Li+, Cs+, Ca2+, or Sr2 presented the increased trend with the enhanced exchange times, but they decreased as the temperature increased. The negative ΔrGmθ values and the positive ΔrHmθ and ΔrSmθ values suggested that the exchanged procedure belonged to spontaneous, endothermic, and entropy-increasing behaviors; their kinetic performances followed a pseudo–second–order model. However, the calculated Ea values of exchange process showed the increased tendencies with the enhanced exchange times, indicating that the exchange process became more difficult. Finally, the preliminary adsorption results indicated that the maximum adsorption amount at 273 K and 1 bar was 0.51 mmol/g of CH4 and 0.38 mmol/g of N2 by (Na, K)–CP, and 2.32 mmol/g of CO2 by Li–6–CP.
Collapse
Affiliation(s)
| | | | | | - Jihong Sun
- Correspondence: (J.S.); (X.W.); Tel.: +86-10-67391983 (J.S.)
| | - Xia Wu
- Correspondence: (J.S.); (X.W.); Tel.: +86-10-67391983 (J.S.)
| |
Collapse
|
5
|
Abstract
Nano-zeolite is an innovative class of materials that received recognition for its potential use in water and tertiary wastewater treatment. These applications include ion-exchange/sorption, photo-degradation, and membrane separation. The aim of this work is to summarize and analyze the current knowledge about the utilization of nano-zeolite in these applications, identify the gaps in this field, and highlight the challenges that face the wide scale applications of these materials. Within this context, an introduction to water quality, water and wastewater treatment, utilization of zeolite in contaminant removal from water was addressed and linked to its structure and the advances in zeolite preparation techniques were overviewed. To have insights into the trends of the scientific interest in this field, an in-depth analysis of the variation in annual research distribution over the last decade was performed for each application. This analysis covered the research that addressed the potential use of both zeolites and nano-zeolites. For each application, the characterization, experimental testing schemes, and theoretical analysis methodologies were overviewed. The results of the most advanced research were collected, summarized, and analyzed to allow an easy visualization and comparison of these research results. Finally, the gaps and challenges that face these applications are concluded.
Collapse
|
6
|
Wang B, Li J, Zhou X, Hao W, Zhang S, Lan C, Wang X, Wang Z, Xu J, Zhang JN, Li X, Yan W. Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01492g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Zeolite A with commercial quality and high removal efficiency for Sr2+ was hydrothermally synthesized from lithium slag after mild and facile activation.
Collapse
Affiliation(s)
- Binyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Li
- Research Institute of Jilin Petrochemical Company, PetroChina, Jilin 132001, China
| | - Xue Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wenfeng Hao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shaoqing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chang Lan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaomei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ziyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaolong Li
- Nuclear and Radiation Safety Center of Ministry of Ecology and Environment, Beijing 102488, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Dran'kov A, Shichalin O, Papynov E, Nomerovskii A, Mayorov V, Pechnikov V, Ivanets A, Buravlev I, Yarusova S, Zavjalov A, Ognev A, Balybina V, Lembikov A, Tananaev I, Shapkin N. Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites. NUCLEAR ENGINEERING AND TECHNOLOGY 2021. [DOI: 10.1016/j.net.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Jiménez-Reyes M, Almazán-Sánchez PT, Solache-Ríos M. Radioactive waste treatments by using zeolites. A short review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 233:106610. [PMID: 33839541 DOI: 10.1016/j.jenvrad.2021.106610] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Radionuclides in the environment is an important issue, many techniques have been developed for the removal of radionuclides from the environment. One of those techniques is the adsorption and natural and synthesized materials have been used to remove different radionuclides from water. The adsorbents used for removal of radionuclides should have high retention capacity and they should be resistant to radiation. One of the natural materials used is the zeolites due to its high ion exchange capacities, adsorption efficiency, resistance to radiation and abundance. The present review describes the advances made on radioactive waste treatments using zeolites as adsorbents, the elements: cesium, strontium, cobalt, molybdenum, uranium, plutonium, americium, samarium, and europium were selected according to their nuclear importance and their presence in the environment. Firstly, a brief description of the zeolites is given and then a review on the separation of these radionuclides from water by using zeolites is presented.
Collapse
Affiliation(s)
- M Jiménez-Reyes
- Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, C. P. 52750, Mexico
| | | | - M Solache-Ríos
- Instituto Nacional de Investigaciones Nucleares, Departamento de Química, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, C. P. 52750, Mexico.
| |
Collapse
|
9
|
The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int J Biol Macromol 2021; 186:554-562. [PMID: 34216673 DOI: 10.1016/j.ijbiomac.2021.06.184] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
To achieve targeted treatment with fewer adverse effects against fatal cancer diseases, the use of nanoparticles as therapeutic agents or drug carriers has been proved to be very extensive and remarkable, today. In this study, chitosan-magnetite-reduced graphene oxide (CS-Fe3O4-RGO) nanocomposites (NC) were used for the targeted delivery of curcumin (Cur) as anticancer drugs to suppress MCF-7 breast cancer cells and this was accomplished using a facile water-in-oil (W/O) emulsification procedure. FTIR and XRD were used for characterization. The average size distribution of nanoemulsions and their surface charge (zeta potential) were determined by Dynamic light scattering (DLS) analyzer and zeta potential measurement, respectively. SEM Mapping showed the uniform and flat surface for the NC which was confirmed by the EDX diagram. Measurement of VSM exhibited that the Fe3O4-RGOs have superparamagnetic properties. According to the MTT assay, the NC has the highest toxicity at 0.1 against MCF-7 cancer cells. The results of flow cytometry indicated apoptosis in MCF-7 cells. By using the dialysis method, it was determined that curcumin was released faster in an acidic medium. It is expected that the results of this study will be effective in the development of targeted drug delivery as well as the development of CS- Fe3O4-RGO-based drug carriers against various cancer cells during future research.
Collapse
|