1
|
Jo J, Ishii Y, Saito R, Tanaka A, Hayashi S. Evaluation of bioavailable 137Cs transfer from forest litter to Scarabaeidae beetle (Protaetia orientalis) through a breeding experiment in Fukuhshima. PLoS One 2024; 19:e0310088. [PMID: 39240953 PMCID: PMC11379175 DOI: 10.1371/journal.pone.0310088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/24/2024] [Indexed: 09/08/2024] Open
Abstract
Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, most of the released 137Cs remained in the litter and surface soil of the adjacent forest floor. However, 137Cs absorption by large soil invertebrates near this site has not been estimated. The aim of this study was to understand the role of soil macroinvertebrates in 137Cs uptake from forest litter into forest ecosystems. Breeding experiments were conducted using scarab beetle larvae (Protaetia orientalis). Dissection experiments revealed that 85% of the total 137Cs was concentrated in the digestive tract of larvae, while a low proportion was absorbed into the skin and muscle tissues. The 137Cs absorption rate, indicating the transfer of 137Cs from consumed litter to larval tissue, was low (0.39%). 137Cs concentrations decreased to one-fourth from larva to imago, possibly due to excretion from the digestive tract and during eclosion. In the elimination experiment, biological half-lives were 0.26-0.64 and 0.11-0.47 days and 3.35-48.30 and 4.01-17.70 days for the digestive tract and muscle/skin tissues in the fast and slow components, respectively, corresponding to 137Cs discharge from the gastrointestinal tract and physiological clearance. In the sequential extraction experiment, litter digestion by flower chafer larvae significantly reduced the bioavailable fraction of 137Cs including water-soluble, exchangeable, oxidized, and organic forms, from 23.2% in litter to 17.7% in feces. Residual 137Cs was not reduced by digestion, probably because it was fixed in soil clay. Our study on breeding experiments of the Scarabaeidae beetle confirmed the low bioavailability of 137Cs in the litter in Fukushima. However, litter feeders may play an important role in transferring 137Cs to higher trophic levels in the forest ecosystem by extracting the bioavailable fraction of the vast stock of 137Cs on the forest floor.
Collapse
Affiliation(s)
- Jaeick Jo
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Miharu, Fukushima, Japan
| | - Yumiko Ishii
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Miharu, Fukushima, Japan
| | - Rie Saito
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Miharu, Fukushima, Japan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Asuka Tanaka
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Miharu, Fukushima, Japan
| | - Seiji Hayashi
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Miharu, Fukushima, Japan
| |
Collapse
|
2
|
Manaka T, Araki MG, Ohashi S, Imamura N, Sakashita W, Ogo S, Komatsu M, Sakata T, Shinomiya Y. Radiocesium mobility in different parts of the two major tree species in Fukushima. Sci Rep 2023; 13:9144. [PMID: 37277410 DOI: 10.1038/s41598-023-35852-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Radiocesium (137Cs) released in the Fukushima Dai-ichi Nuclear Power Plant accident is still cycling in the forest ecosystem. We examined the mobility of 137Cs in the external parts-leaves/needles, branches, and bark-of the two major tree species in Fukushima, Japanese cedar (Cryptomeria japonica) and konara oak (Quercus serrata). This variable mobility will likely lead to spatial heterogeneity of 137Cs and difficulty in predicting its dynamics for decades. We conducted leaching experiments on these samples by using ultrapure water and ammonium acetate. In Japanese cedar, the 137Cs percentage leached from current-year needles was 26-45% (ultrapure water) and 27-60% (ammonium acetate)-similar to those from old needles and branches. In konara oak, the 137Cs percentage leached from leaves was 47-72% (ultrapure water) and 70-100% (ammonium acetate)-comparable to those from current-year and old branches. Relatively poor 137Cs mobility was observed in the outer bark of Japanese cedar and in organic layer samples from both species. Comparison of the results from corresponding parts revealed greater 137Cs mobility in konara oak than in Japanese cedar. We suggest that more active cycling of 137Cs occurs in konara oak.
Collapse
Affiliation(s)
- Takuya Manaka
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan.
| | - Masatake G Araki
- Extension and Protection Division, Private Forest Department, Forestry Agency, Chiyoda, Tokyo, 100-8952, Japan
| | - Shinta Ohashi
- Department of Wood Properties and Processing, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Naohiro Imamura
- Hokkaido Research Center, FFPRI, Sapporo, Hokkaido, 062-8516, Japan
| | - Wataru Sakashita
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Sumika Ogo
- Department of Mushroom Science and Forest Microbiology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masabumi Komatsu
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
- Department of Mushroom Science and Forest Microbiology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Tadashi Sakata
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yoshiki Shinomiya
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
3
|
Tatsuno T, Waki H, Kakuma M, Nihei N, Takase T, Wada T, Yoshimura K, Nakanishi T, Ohte N. Effect of radioactive cesium-rich microparticles on radioactive cesium concentration and distribution coefficient in rivers flowing through the watersheds with different contaminated condition in Fukushima. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116983. [PMID: 36565500 DOI: 10.1016/j.jenvman.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Radioactive cesium-rich microparticles (CsMPs) derived from the Fukushima Daiichi Nnuclear Power Plant accident were detected from soils and river water around Fukushima Prefecture, Japan. Because CsMPs are insoluble and rich in radioactive cesium (RCs), they may cause the overestimation of solid-water distribution coefficient (Kd) for RCs in the water. Previous studies showed the proportion of RCs derived from CsMPs on RCs concentration in soils collected from areas with different contaminated levels. Because the proportion of RCs concentration derived CsMPs to the RCs concentration of soils in the less contaminated areas is higher than that in the highly contaminated areas, the effect of CsMPs on particulate RCs concentration in river water may be larger in the less contaminated areas. However, the difference in the effects of CsMPs on the particulate RCs concentration and Kd in river water flowing through watersheds with different contaminated levels has not been clarified. In this study, we investigated the effect of CsMPs on the particulate RCs concentration and Kd in two rivers, Takase River and Kami-Oguni River, flowing through the watersheds with different RCs contaminated levels in Fukushima Prefecture. CsMPs might enter rivers due to soil erosion because they were detected only in some samples collected from both rivers during flood events. CsMPs accounted for more than half of particulate RCs concentration in some water samples collected in the flood condition. In particular, the proportion of CsMPs in particulate RCs for the Kami-Oguni River was greater than that for the Takase River. However, when evaluating for the entire water sampling in the flood condition, a proportion of RCs concentration derived from CsMPs in the average RCs concentrations per unit mass of SS in both river waters collected in the flood condition was not large. CsMPs might temporarily increase the particulate RCs concentration and Kd in the flood event, but CsMPs did not significantly affect them when evaluated throughout the event.
Collapse
Affiliation(s)
- Takahiro Tatsuno
- Institute of Environment Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Hiromichi Waki
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Minato Kakuma
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Naoto Nihei
- Faculty of Food and Agricultural Science, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Tsugiko Takase
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1248, Japan.
| | - Toshihiro Wada
- Institute of Environment Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Kazuya Yoshimura
- Sector of Fukushima Research and Development, Japan Atomic Energy Agency, 45-169 Sukakeba, Kaibama, Haramachi-ku, Minamisoma City, Fukushima, 975-0036, Japan.
| | - Takahiro Nakanishi
- Sector of Fukushima Research and Development, Japan Atomic Energy Agency, 45-169 Sukakeba, Kaibama, Haramachi-ku, Minamisoma City, Fukushima, 975-0036, Japan; Nuclear Science Research Institute, Japan Atomic Energy Agency, 2-4 Shirakata,Tokai-mura,Naka-gun, Ibaraki, 319-1195, Japan.
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Ohkubo T, Takei A, Tachi Y, Fukatsu Y, Deguchi K, Ohki S, Shimizu T. New Approach To Understanding the Experimental 133Cs NMR Chemical Shift of Clay Minerals via Machine Learning and DFT-GIPAW Calculations. J Phys Chem A 2023; 127:973-986. [PMID: 36657157 DOI: 10.1021/acs.jpca.2c08880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Structural determination of adsorbed atoms on layered structures such as clay minerals is a complex subject. Radioactive cesium (Cs) is an important element for environmental conservation, so it is vital to understand its adsorption structure on clay. The nuclear magnetic resonance (NMR) parameters of 133Cs, which can be determined from solid-state NMR experiments, are sensitive to the local neighboring structures of adsorbed Cs. However, determining the Cs positions from NMR data alone is difficult. This paper describes an approach for identifying the expected atomic positions on clay minerals by combining machine learning (ML) with experimentally observed chemical shifts. A linear ridge regression model for ML is constructed from the smooth overlap of atomic position descriptor and gauge-including projector augmented wave (GIPAW) ab initio data. The constructed ML model predicts the GIPAW data to within a 3 ppm root-mean-squared error. At this stage, the 133Cs chemical shifts can be instantaneously calculated from the Cs positions on any clay layers using ML. The inverse analysis, which derives the atomic positions from experimentally observed chemical shifts, is developed from the ML model. The input data for the inverse analysis are the layer structure and the experimentally observed chemical shifts. The Cs positions for the targeted chemical shifts are then output. Inverse analysis is applied to montmorillonite, and the resultant Cs positions are found to be consistent with previous results (Ohkubo, T.; et al. J. Phys. Chem. A 2018, 122, 9326-9337). The Cs positions on saponite clay are also clarified from experimentally observed chemical shifts and inverse analysis.
Collapse
Affiliation(s)
- Takahiro Ohkubo
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
| | - Akihiro Takei
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
| | - Yukio Tachi
- Japan Atomic Energy Agency, Muramatsu 4-33, Tokai, Ibaraki 319-1194, Japan
| | - Yuta Fukatsu
- Japan Atomic Energy Agency, Muramatsu 4-33, Tokai, Ibaraki 319-1194, Japan
| | - Kenzo Deguchi
- High Field NMR Group, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- High Field NMR Group, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tadashi Shimizu
- High Field NMR Group, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| |
Collapse
|
5
|
Manaka T, Komatsu M, Sakashita W, Imamura N, Hashimoto S, Hirai K, Miura S, Kaneko S, Sakata T, Shinomiya Y. Ten-year trends in vertical distribution of radiocesium in Fukushima forest soils, Japan. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 251-252:106967. [PMID: 35930867 DOI: 10.1016/j.jenvrad.2022.106967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
To elucidate interannual changes in the vertical distribution of 137Cs in forest ecosystems contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, we investigated 137Cs inventories in forest soils (both organic and mineral soil horizons) at 10 sampling plots with different 137Cs deposition levels and dominant species for up to 10 years after the accident. We examined the temporal variation of the 137Cs inventories by depth with exponential regression models (assuming that the transition and partitioning of 137Cs are still active) and exponential offset regression models (assuming a shift to a stable 137Cs distribution, defined as the "quasi-equilibrium steady-state" in the Chernobyl accident). In the organic horizon, the 137Cs inventories were exponentially decreasing, and it might take more time to converge in the quasi-equilibrium steady-state at most plots. In the mineral soil horizon, most of 137Cs was found in the surface layer of the mineral soil horizon (0-5 cm). In this layer, the inventories first increased and then become relatively constant, and the exponential offset model was selected at most plots, suggesting entry into the quasi-equilibrium steady-state over the observation period. Although we also observed exponentially increasing trends in a lower layer (5-10 cm) of the mineral soil horizon, there was no clear increasing or decreasing trend of 137Cs inventory in the deeper mineral soil layers (10-15 and 15-20 cm). Our calculation of the relaxation depth and migration center revealed that downward migration of 137Cs is not significant in terms of the overall 137Cs distribution in the mineral soil horizon over 10 years.
Collapse
Affiliation(s)
- Takuya Manaka
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan.
| | - Masabumi Komatsu
- Department of Mushroom Science and Forest Microbiology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan; Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Wataru Sakashita
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan; Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Naohiro Imamura
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - Shoji Hashimoto
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - Keizo Hirai
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - Satoru Miura
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Shinji Kaneko
- Kansai Research Center, FFPRI, Kyoto, Kyoto, 612-0855, Japan
| | - Tadashi Sakata
- Department of Forest Soils, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan; Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yoshiki Shinomiya
- Center for Forest Restoration and Radioecology, FFPRI, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
6
|
Tatsuno T, Hamamoto S, Nihei N, Nishimura T. Vertical migration of cesium in weathered granite soil under flowing water condition depending on Cs concentration and states of dissolved organic matter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114409. [PMID: 35032940 DOI: 10.1016/j.jenvman.2021.114409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/12/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
After the accident at the Fukushima Daiichi nuclear power plant in Japan, the migration of radioactive cesium (Cs) in soils has become a crucial issue since this can negatively affect human health and the surrounding environment. Dissolved organic matter (DOM) may have different influences on Cs migration in soils depending on Cs adsorption sites with different selectivity. It is unclear how DOM affects the rapid migration of Cs in soils under flowing water conditions during rainfall events. This study evaluated the effects of DOM on Cs migration in weathered granite soil depending on Cs adsorption sites by conducting laboratory experiments under different DOM conditions and Cs concentrations in the liquid phase. Cs concentration can affect the fraction of Cs adsorbed onto differently selective sites, and DOM can have different influences on Cs migration in the soil accordingly. Under condition of high-Cs concentration, the DOM adsorbed on the soil reduced Cs migration due to increasing Cs electrostatic adsorption to less selective sites in the soil. Meanwhile, under low-Cs concentration, the DOM adsorbed on the soil enhanced Cs migration because the DOM on the soil decreased the Cs adsorption to highly selective sites. Furthermore, DOM in the liquid phase detached the Cs adsorbed on the less selective sites and enhanced Cs migration in the soil, regardless of the Cs concentration.
Collapse
Affiliation(s)
- Takahiro Tatsuno
- Institute of Environment Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Shoichiro Hamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Naoto Nihei
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Taku Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
7
|
Voronina AV, Bajtimirova MO, Semenishchev VS. The study of 137Cs and 90Sr sorption by natural and modified aluminosilicates in presence of humic acids. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|