1
|
Huang Q, Xie J, Seetharaman J. Crystal Structure of Schizosaccharomyces pombe Rho1 Reveals Its Evolutionary Relationship with Other Rho GTPases. BIOLOGY 2022; 11:biology11111627. [PMID: 36358328 PMCID: PMC9687936 DOI: 10.3390/biology11111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Simple Summary Rho family of proteins are involved in cytoskeletal organization, cell mobility and polarity, and are implicated in cancer morphogenesis. The structure and function of the Rho homologs from higher-level organisms are well studied, but not from the lower-level organisms. Such as over 95% of the known structures of Rho GTPases are from higher-order mammalian organisms, with only three structures of Rho homologs reported to date from lower-level, single-celled organisms. In this paper we report the crystal structure of Rho1 from Schizosaccharomyces pombe, also called fission yeast (SpRho1), in complex with GDP in the presence of Mg2+ at 2.63-Å resolution, to broaden our understanding of Rho homologs in lower-level organisms. Although the overall structure is similar to that of known Rho homologs, we observed subtle differences at the Switch I and II regions, in β2 and β3, and in the Rho insert domain and loop from Phe107 to Pro112. Combined with literature and sequence analyses, we suggest that the Switch regions and Rho insert domain may contribute to downstream kinase activation in different species through their interactions with different effectors and regulators; and the conservation and divergence of Rho GTPases among difference species and provide evolutionary insight for SpRho1. While many studies have reported the evolutionary development of Rho GTPases based on their amino acid sequences, the present study, for the first time, explores these evolutionary aspects based on structure. Our analysis indicates that SpRho is evolutionarily closer to HsRhoC than HsRhoA, as previously believed. Abstract The Rho protein, a homolog of Ras, is a member of the Ras superfamily of small GTPases. Rho family proteins are involved in cytoskeletal organization, cell mobility, and polarity, and are implicated in cancer morphogenesis. Although Rho homologs from higher-order mammalian organisms are well studied, there are few studies examining Rho proteins in lower-level single-celled organisms. Here, we report on the crystal structure of Rho1 from Schizosaccharomyces pombe (SpRho1) in complex with GDP in the presence of Mg2+ at a 2.78 Å resolution. The overall structure is similar to that of known Rho homologs, including human RhoA, human RhoC, and Aspergillus fumigatus Rho1 (AfRho1), with some exceptions. We observed subtle differences at the Switch I and II regions, in β2 and β3, and in the Rho insert domain and loop from Phe107 to Pro112. Our analysis suggests that SpRho is evolutionarily closer to HsRhoC than HsRhoA, as previously believed.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | - Jiarong Xie
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
2
|
Wang D, Han J, Pan C, Li C, Zhao Y, Liu S, Zhang Y, Tian J, Yi Y, Zhu J, Liu C, Wang Y, Xian Z, Meng J, Qin S, Tang X, Wang F, Liang A. Penilloic acid is the chief culprit involved in non-IgE mediated, immediate penicillin-induced hypersensitivity reactions in mice. Front Pharmacol 2022; 13:874486. [PMID: 36071842 PMCID: PMC9443931 DOI: 10.3389/fphar.2022.874486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolites/impurities (MIs) of penicillin are normally considered to be the main substances inducing immediate hypersensitivity reactions in penicillin treatment. Our previous research found that penicillin can cause non-allergic hypersensitivity reactions (NAHRs) by directly triggering vascular hyperpermeability and exudative inflammation. However, the chief culprits and underlying mechanisms involved in penicillin-induced NAHRs have not yet been fully elucidated. In this study, we used a combination of approaches including a mouse non-allergic hypersensitivity reaction model, UPLC-MS/MS analyses of arachidonic acid metabolites (AAMs), immunoblotting technique, and molecular docking, etc to investigate the culprits involved in penicillin-induced hypersensitivity reactions. We found penilloic acid, one of the main MIs of penicillin, could trigger NAHRs via inducing increased vascular permeability, while the other MIs did no exhibit similar effect. Penilloic acid-induced reactions were not IgE-dependent. Significantly increased arachidonic acids and cascade metabolites in lungs, and activation of RhoA/ROCK signaling pathway in the ears and lungs of mice were noticed after once administration of penilloic acid. This study revealed that penilloic acid was the chief culprit involved in penicillin-induced immediate NAHRs in mice, which mainly associated with direct stimulation of vascular hyperpermeability and exudative inflammation. The activations of AAMs and RhoA/ROCK signaling pathway played important roles in these reactions.
Collapse
Affiliation(s)
- Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Zhu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aihua Liang,
| |
Collapse
|
3
|
Conformational Insights into the Control of CNF1 Toxin Activity by Peptidyl-Prolyl Isomerization: A Molecular Dynamics Perspective. Int J Mol Sci 2021; 22:ijms221810129. [PMID: 34576292 PMCID: PMC8467853 DOI: 10.3390/ijms221810129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic necrotizing factor 1 (CNF1) toxin from uropathogenic Escherichia coli constitutively activates Rho GTPases by catalyzing the deamidation of a critical glutamine residue located in the switch II (SWII). In crystallographic structures of the CNF1 catalytic domain (CNF1CD), surface-exposed P768 and P968 peptidyl-prolyl imide bonds (X-Pro) adopt an unusual cis conformation. Here, we show that mutation of each proline residue into glycine abrogates CNF1CD in vitro deamidase activity, while mutant forms of CNF1 remain functional on RhoA in cells. Using molecular dynamics simulations coupled to protein-peptide docking, we highlight the long-distance impact of peptidyl-prolyl cis-trans isomerization on the network of interactions between the loops bordering the entrance of the catalytic cleft. The energetically favorable isomerization of P768 compared with P968, induces an enlargement of loop L1 that fosters the invasion of CNF1CD catalytic cleft by a peptide encompassing SWII of RhoA. The connection of the P968 cis isomer to the catalytic cysteine C866 via a ladder of stacking interactions is alleviated along the cis-trans isomerization. Finally, the cis-trans conversion of P768 favors a switch of the thiol side chain of C866 from a resting to an active orientation. The long-distance impact of peptidyl-prolyl cis-trans isomerizations is expected to have implications for target modification.
Collapse
|
4
|
Lin Y, Lu S, Zhang J, Zheng Y. Structure of an inactive conformation of GTP-bound RhoA GTPase. Structure 2021; 29:553-563.e5. [PMID: 33497604 DOI: 10.1016/j.str.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
By using 31P NMR, we present evidence that the Rho family GTPase RhoA, similar to Ras GTPases, exists in an equilibrium of conformations when bound to GTP. High-resolution crystal structures of RhoA bound to the GTP analog GMPPNP and to GDP show that they display a similar overall inactive conformation. In contrast to the previously reported crystal structures of GTP analog-bound forms of two RhoA dominantly active mutants (G14V and Q63L), GMPPNP-bound RhoA assumes an open conformation in the Switch I loop with a previously unseen interaction between the γ-phosphate and Pro36, instead of the canonical Thr37. Molecular dynamics simulations found that the oncogenic RhoAG14V mutant displays a reduced flexibility in the Switch regions, consistent with a crystal structure of GDP-bound RhoAG14V. Thus, GDP- and GTP-bound RhoA can present similar inactive conformations, and the molecular dynamics in the Switch regions are likely to have a role in RhoA activation.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 Chongqing South Road, Shanghai 200025, China
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Forsythoside A and Forsythoside B Contribute to Shuanghuanglian Injection-Induced Pseudoallergic Reactions through the RhoA/ROCK Signaling Pathway. Int J Mol Sci 2019; 20:ijms20246266. [PMID: 31842335 PMCID: PMC6940901 DOI: 10.3390/ijms20246266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years, hypersensitivity reactions to the Shuanghuanglian injection have attracted broad attention. However, the componential chief culprits inducing the reactions and the underlying mechanisms involved have not been completely defined. In this study, we used a combination of approaches based on the mouse model, human umbilical vein endothelial cell monolayer, real-time cellular monitoring, immunoblot analysis, pharmacological inhibition, and molecular docking. We demonstrated that forsythoside A and forsythoside B contributed to Shuanghuanglian injection-induced pseudoallergic reactions through activation of the RhoA/ROCK signaling pathway. Forsythoside A and forsythoside B could trigger dose-dependent vascular leakage in mice. Moreover, forsythoside A and forsythoside B slightly elicited mast cell degranulation. Correspondingly, treatment with forsythoside A and forsythoside B disrupted the endothelial barrier and augmented the expression of GTP-RhoA, p-MYPT1, and p-MLC2 in a concentration-dependent manner. Additionally, the ROCK inhibitor effectively alleviated forsythoside A/forsythoside B-induced hyperpermeability in both the endothelial cells and mice. Similar responses were not observed in the forsythoside E-treated animals and cells. These differences may be related to the potential of the tested compounds to react with RhoA-GTPγS and form stable interactions. This study innovatively revealed that some forsythosides may cause vascular leakage, and therefore, limiting their contents in injections should be considered.
Collapse
|
6
|
Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal 2013; 25:1955-61. [PMID: 23669310 DOI: 10.1016/j.cellsig.2013.04.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 01/17/2023]
Abstract
The last decades have witnessed an exponential increase in our knowledge of Rho GTPase signaling network which further highlighted the cross talk between these proteins and the complexity of their signaling pathways. In this review, we summarize the upstream and downstream players from Rho GTPases that are mainly involved in actin polymerization leading to cell motility and potentially playing a role in cancer cell metastasis.
Collapse
Affiliation(s)
- Samer Hanna
- Department of Natural Science, The Lebanese American University, Beirut 1102 2801, Lebanon
| | | |
Collapse
|