1
|
Passini FS, Bornstein B, Rubin S, Kuperman Y, Krief S, Masschelein E, Mehlman T, Brandis A, Addadi Y, Shalom SHO, Richter EA, Yardeni T, Tirosh A, De Bock K, Zelzer E. Piezo2 in sensory neurons regulates systemic and adipose tissue metabolism. Cell Metab 2025:S1550-4131(24)00526-6. [PMID: 39919739 DOI: 10.1016/j.cmet.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Systemic metabolism ensures energy homeostasis through inter-organ crosstalk regulating thermogenic adipose tissue. Unlike the well-described inductive role of the sympathetic system, the inhibitory signal ensuring energy preservation remains poorly understood. Here, we show that, via the mechanosensor Piezo2, sensory neurons regulate morphological and physiological properties of brown and beige fat and prevent systemic hypermetabolism. Targeting runt-related transcription factor 3 (Runx3)/parvalbumin (PV) sensory neurons in independent genetic mouse models resulted in a systemic metabolic phenotype characterized by reduced body fat and increased insulin sensitivity and glucose tolerance. Deletion of Piezo2 in PV sensory neurons reproduced the phenotype, protected against high-fat-diet-induced obesity, and caused adipose tissue browning and beiging, likely driven by elevated norepinephrine levels. Finding that brown and beige fat are innervated by Runx3/PV sensory neurons expressing Piezo2 suggests a model in which mechanical signals, sensed by Piezo2 in sensory neurons, protect energy storage and prevent a systemic hypermetabolic phenotype.
Collapse
Affiliation(s)
- Fabian S Passini
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Evi Masschelein
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Huri-Ohev Shalom
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Erik A Richter
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tal Yardeni
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Institute of Endocrinology, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Hong J, Raza SHA, Liu M, Li M, Ruan J, Jia J, Ge C, Cao W. Association analysis of transcriptome and quasi-targeted metabolomics reveals the regulation mechanism underlying broiler muscle tissue development at different levels of dietary guanidinoacetic acid. Front Vet Sci 2024; 11:1384028. [PMID: 38725583 PMCID: PMC11080945 DOI: 10.3389/fvets.2024.1384028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The development and characteristics of muscle fibers in broilers are critical determinants that influence their growth performance, as well as serve as essential prerequisites for the production of high-quality chicken meat. Guanidinoacetic acid (GAA) is a crucial endogenous substance in animal creatine synthesis, and its utilization as a feed additive has been demonstrated the capabilities to enhance animal performance, optimize muscle yield, and augment carcass quality. The objective of this study was to investigate the regulation and molecular mechanism underlying muscle development in broilers at different levels of GAA via multiple omics analysis. The 90 Cobb broilers, aged 1 day, were randomly allocated into three treatments consisting of five replicates of six chickens each. The control group was provided with a basal diet, while the Normal GAA and High GAA groups received a basal diet supplemented with 1.2 g/kg and 3.6 g/kg of GAA, respectively. After a feeding period of 42 days, the pectoralis muscles were collected for histomorphological observation, transcriptome and metabolomic analysis. The results demonstrated that the addition of 1.2 g/kg GAA in the diet led to an augmentation in muscle fiber diameter and up-regulation of IGF1, IHH, ASB2, and ANKRD2 gene expression. However, a high dose of 3.6 g/kg GAA in the diet potentially reversed the beneficial effects on chicken breast development by excessively activating the TGF-β signaling pathway and reducing nucleotide metabolite content. These findings would provide a theoretical foundation for enhancing the performance and meat quality of broilers by incorporating GAA as a feed additive.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mengyuan Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinrui Ruan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| | - Weina Cao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Deng K, Liu Z, Li X, Zhang Z, Fan Y, Huang Q, Zhang Y, Wang F. Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway. Cells 2023; 12:cells12071005. [PMID: 37048078 PMCID: PMC10093215 DOI: 10.3390/cells12071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFβ1) is involved in a variety of cellular processes, such as proliferation, differentiation, and apoptosis. However, little is known about the m6A-mediated TGFβ1 regulation in myogenesis. Here, we observed an increase in endogenous TGFβ1 expression and activity during myotube differentiation. However, the knockdown of TGFβ1 inhibits the proliferation and induces cell apoptosis of myoblast. Moreover, we found that m6A in 5′-untranslated regions (5′UTR) of TGFβ1 promote its decay and inhibit its expression, leading to the blockage of the TGFβ1/SMAD2 signaling pathway. Furthermore, the targeted specific demethylation of TGFβ1 m6A using dCas13b-FTO significantly increased the TGFβ1-mediated activity of the SMAD2 signaling pathway, promoting myoblast proliferation. These findings suggest that TGFβ1 is an essential regulator of myoblast growth that is negatively regulated by m6A. Overall, these results highlight the critical role of m6A-mediated post-transcriptional regulation in myogenesis.
Collapse
|
4
|
Torcinaro A, Cappetta D, De Santa F, Telesca M, Leigheb M, Berrino L, Urbanek K, De Angelis A, Ferraro E. Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites 2022; 12:663. [PMID: 35888787 PMCID: PMC9316887 DOI: 10.3390/metabo12070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate with muscle mass loss. We chose to investigate the ability of the metabolic modulator Ranolazine to counteract skeletal muscle dysfunctions that occur with aging. For this purpose, we treated aged C57BL/6 mice with Ranolazine/vehicle for 14 days and collected the tibialis anterior and gastrocnemius muscles for histological and gene expression analyses, respectively. We found that Ranolazine treatment significantly increased the muscle strength of aged mice. At the histological level, we found an increase in centrally nucleated fibers associated with an up-regulation of genes encoding MyoD, Periostin and Osteopontin, thus suggesting a remodeling of the muscle even in the absence of physical exercise. Notably, these beneficial effects of Ranolazine were also accompanied by an up-regulation of antioxidant and mitochondrial genes as well as of NADH-dehydrogenase activity, together with a more efficient protection from oxidative damage in the skeletal muscle. These data indicate that the protection of muscle from oxidative stress by Ranolazine might represent a valuable approach to increase skeletal muscle strength in elderly populations.
Collapse
Affiliation(s)
- Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
- Istituto Dermopatico dell’Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Immunology Laboratory, Via Monti di Creta, 104, 00167 Rome, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
| | - Marialucia Telesca
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy;
- CEINGE-Advanced Biotechnologies, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | | |
Collapse
|
5
|
Masschelein E, D'Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle 2020; 10:21. [PMID: 32646489 PMCID: PMC7346400 DOI: 10.1186/s13395-020-00237-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. RESULTS By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. CONCLUSIONS Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.
Collapse
Affiliation(s)
- Evi Masschelein
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Gommaar D'Hulst
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Joel Zvick
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Laura Hinte
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tatiane Gorski
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ori Bar-Nur
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Abstract
Changes in muscle stem cell (MuSC) function during aging have been assessed using various in vivo and ex vivo systems. However, changes in clonal complexity within the aged MuSC pool are relatively understudied. Although the dissection of stem cell heterogeneity has greatly benefited from several technological advancements, including single cell sequencing, these methods preclude longitudinal measures of individual stem cell behavior. Instead, multicolor labeling systems enable lineage tracing with single cell resolution. Here, we describe a method of inducibly labeling MuSCs with the Brainbow-2.1 multicolor lineage tracing reporter in vivo to track individual MuSC fate and assess clonal complexity in the overall MuSC pool throughout the mouse lifespan.
Collapse
|
7
|
Mahdy MAA, Warita K, Hosaka YZ. Neutralization of transforming growth factor (TGF)-β1 activity reduced fibrosis and enhanced regeneration of glycerol-injured rat muscle. J Vet Med Sci 2019; 82:168-171. [PMID: 31875598 PMCID: PMC7041973 DOI: 10.1292/jvms.19-0446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, we have shown that glycerol induces early fibrosis in rat muscles which
persists up to two weeks after injury. The current study aims to determine the possible
factor associated with fibrosis of rat muscle following glycerol injury. Eight-week-old
male Wistar rats received either glycerol only (as a control) or a co-treatment of
neutralizing antibody to transforming growth factor (TGF)-β1 (5 and 12.5
µg). Both antibody doses significantly decreased fibrosis and improved
muscle regeneration suggesting that anti-TGF-β1 antibody has both anti-fibrotic and
myogenic effects. In conclusion, fibrosis developed in glycerol-injured rat muscles, might
be mediated, in part, by the upregulation of TGF-β1 expression. Targeting TGF-β1 could be
a promising approach for inhibiting fibrosis and enhancing muscle regeneration.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
8
|
N-acetylcysteine Decreases Fibrosis and Increases Force-Generating Capacity of mdx Diaphragm. Antioxidants (Basel) 2019; 8:antiox8120581. [PMID: 31771272 PMCID: PMC6943616 DOI: 10.3390/antiox8120581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Respiratory muscle weakness occurs due to dystrophin deficiency in Duchenne muscular dystrophy (DMD). The mdx mouse model of DMD shows evidence of impaired respiratory muscle performance with attendant inflammation and oxidative stress. We examined the effects of N-acetylcysteine (NAC) supplementation on respiratory system performance in mdx mice. Eight-week-old male wild type (n = 10) and mdx (n = 20) mice were studied; a subset of mdx (n = 10) received 1% NAC in the drinking water for 14 days. We assessed breathing, diaphragm, and external intercostal electromyogram (EMG) activities and inspiratory pressure during ventilatory and non-ventilatory behaviours. Diaphragm muscle structure and function, cytokine concentrations, glutathione status, and mRNA expression were determined. Diaphragm force-generating capacity was impaired in mdx compared with wild type. Diaphragm muscle remodelling was observed in mdx, characterized by increased muscle fibrosis, immune cell infiltration, and central myonucleation. NAC supplementation rescued mdx diaphragm function. Collagen content and immune cell infiltration were decreased in mdx + NAC compared with mdx diaphragms. The cytokines IL-1β, IL-6 and KC/GRO were increased in mdx plasma and diaphragm compared with wild type; NAC decreased systemic IL-1β and KC/GRO concentrations in mdx mice. We reveal that NAC treatment improved mdx diaphragm force-generating capacity associated with beneficial anti-inflammatory and anti-fibrotic effects. These data support the potential use of NAC as an adjunctive therapy in human dystrophinopathies.
Collapse
|
9
|
Tierney MT, Stec MJ, Rulands S, Simons BD, Sacco A. Muscle Stem Cells Exhibit Distinct Clonal Dynamics in Response to Tissue Repair and Homeostatic Aging. Cell Stem Cell 2018; 22:119-127.e3. [PMID: 29249462 PMCID: PMC5945549 DOI: 10.1016/j.stem.2017.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/15/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
The clonal complexity of adult stem cell pools is progressively lost during homeostatic turnover in several tissues, suggesting a decrease in the number of stem cells with distinct clonal origins. The functional impact of reduced complexity on stem cell pools, and how different tissue microenvironments may contribute to such a reduction, are poorly understood. Here, we performed clonal multicolor lineage tracing of skeletal muscle stem cells (MuSCs) to address these questions. We found that MuSC clonal complexity is maintained during aging despite heterogenous reductions in proliferative capacity, allowing aged muscle to mount a clonally diverse, albeit diminished, response to injury. In contrast, repeated bouts of tissue repair cause a progressive reduction in MuSC clonal complexity indicative of neutral drift. Consistently, biostatistical modeling suggests that MuSCs undergo symmetric expansions with stochastic fate acquisition during tissue repair. These findings establish distinct principles that underlie stem cell dynamics during homeostatic aging and muscle regeneration.
Collapse
Affiliation(s)
- Matthew T Tierney
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael J Stec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steffen Rulands
- Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Abstract
Satellite cells (SCs) are a population of muscle-resident stem cells that are essential for efficient tissue repair. SCs reside in a relatively quiescent state during normal tissue turnover, but are activated in response to injury through the microenvironment and cell-intrinsic signals. During aging, SC dysfunction is a major contributor to the decline in regenerative potential of muscle tissue. Recent studies have demonstrated that both cell-intrinsic and cell-extrinsic factors are deregulated during aging. Interventions that reverse age-associated changes in SCs or the niche have shown to partially rejuvenate the regenerative capacity of aged muscle SCs. In this review, we discuss recent advances in SC biology as it pertains to the deleterious effects of aging. A better understanding of how age-dependent changes in the SC and its environment niche impact muscle regeneration could lead to interventions to ameliorate the effects of aging in humans.
Collapse
Affiliation(s)
- Ara B Hwang
- Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew S Brack
- Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis. Cancer Res 2015; 75:4753-65. [DOI: 10.1158/0008-5472.can-14-3696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/15/2015] [Indexed: 11/16/2022]
|
12
|
Narola J, Pandey SN, Glick A, Chen YW. Conditional expression of TGF-β1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One 2013; 8:e79356. [PMID: 24244485 PMCID: PMC3828351 DOI: 10.1371/journal.pone.0079356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022] Open
Abstract
To study the effects of transforming growth factor beta 1 (TGF-β1) on fibrosis and failure of regeneration of skeletal muscles, we generated a tet-repressible muscle-specific TGF-β1 transgenic mouse in which expression of TGF-β1 is controlled by oral doxycycline. The mice developed muscle weakness and atrophy after TGF-β1 over-expression. We defined the group of mice that showed phenotype within 2 weeks as early onset (EO) and the rest as late onset (LO), which allowed us to further examine phenotypic differences between the groups. While only mice in the EO group showed significant muscle weakness, pathological changes including endomysial fibrosis and smaller myofibers were observed in both groups at two weeks after the TGF-β1 was over-expressed. In addition, the size of the myofibers and collagen accumulation were significantly different between the two groups. The amount of latent and active TGF-β1 in the muscle and circulation were significantly higher in the EO group compared to the LO or control groups. The up-regulation of the latent TGF-β1 indicated that endogenous TGF-β1 was induced by the expression of the TGF-β1 transgene. Our studies showed that the primary effects of TGF-β1 over-expression in skeletal muscles are muscle wasting and endomysial fibrosis. In addition, the severity of the pathology is associated with the total amount of TGF-β1 and the expression of endogenous TGF-β1. The findings suggest that an auto-feedback loop of TGF-β1 may contribute to the severity of phenotypes.
Collapse
Affiliation(s)
- Jigna Narola
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Sachchida Nand Pandey
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Adam Glick
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Integrative Systems Biology and Department of Pediatrics, George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
13
|
Faure C, Morio B, Chafey P, Le Plénier S, Noirez P, Randrianarison-Huetz V, Cynober L, Aussel C, Moinard C. Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats. Proteomics 2013; 13:2191-201. [PMID: 23592530 DOI: 10.1002/pmic.201200262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 03/01/2013] [Accepted: 03/30/2013] [Indexed: 11/07/2022]
Abstract
Citrulline (Cit) actions on muscle metabolism remain unclear. Those latter were investigated using a proteomic approach on Tibialis muscles from male Sprague-Dawley rats. At 23 months of age, rats were either fed ad libitum (AL group) or subjected to dietary restriction for 12 weeks. At the end of the restriction period, one group of rats was euthanized (R group) and two groups were refed for one week with a standard diet supplemented with nonessential amino acids group or Cit (CIT group). Results of the proteomic approach were validated using targeted Western blot analysis and assessment of gene expression of the related genes. Maximal activities of the key enzymes involved in mitochondrial functioning were also determined. Cit supplementation results in a significant increase in the protein expression of the main myofibrillar constituents and of a few enzymes involved in glycogenolysis and glycolysis (CIT vs. AL and R, p < 0.05). Conversely, the expression of oxidative enzymes from Krebs cycle and mitochondrial respiratory chain was significantly decreased (CIT vs. AL, p < 0.05). However, maximal activities of key enzymes of mitochondrial metabolism were not significantly affected, except for complex 1 which presented an increased activity (CIT vs. AL and R, p < 0.05). In conclusion, Cit supplementation increases expression of the main myofibrillar proteins and seems to induce a switch in muscle energy metabolism, from aerobia toward anaerobia.
Collapse
Affiliation(s)
- Cécile Faure
- Département de Biologie Expérimentale, Métabolique et Clinique (EA 4466), Faculté de pharmacie, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kemaladewi DU, ‘t Hoen PA, ten Dijke P, van Ommen GJ, Hoogaars WM. TGF-β signaling in Duchenne muscular dystrophy. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The TGF-β protein family consists of secreted multifunctional cytokines that control diverse processes, such as cell growth and differentiation. Aberrant expression and downstream signaling of these growth factors have been associated with multiple diseases, including muscle wasting disorders, such as Duchenne muscular dystrophy. In this review we discuss recent advances in understanding the role of TGF-β family members during normal skeletal muscle biology/regeneration and their role in muscle pathology, with a special focus on Duchenne muscular dystrophy. In addition, we will highlight progress in the development of potential therapeutics for Duchenne muscular dystrophy based on intervention of TGF-β signaling.
Collapse
Affiliation(s)
- Dwi U Kemaladewi
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
- Department of Molecular & Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Peter A ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Peter ten Dijke
- Department of Molecular & Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Gert Jan van Ommen
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| | - Willem M Hoogaars
- Department of Human Genetics, Leiden University Medical Center, Postzone S4-P, PO Box 9600 2300RC Leiden, The Netherlands
| |
Collapse
|
15
|
Mendias CL, Gumucio JP, Davis ME, Bromley CW, Davis CS, Brooks SV. Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 2012; 45:55-9. [PMID: 22190307 DOI: 10.1002/mus.22232] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Transforming growth factor-beta (TGF-β) is a well-known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF-β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF-β has been shown to induce atrophy and fibrosis, but the effect of TGF-β on muscle contractility and the expression of scleraxis and atrogin-1, an important regulator of muscle atrophy, were not known. METHODS We treated muscles from mice with TGF-β and measured force production, scleraxis, procollagen Iα2, and atrogin-1 protein levels. RESULTS TGF-β decreased muscle fiber size and dramatically reduced maximum isometric force production. TGF-β also induced scleraxis expression in muscle fibroblasts, and increased procollagen Iα2 and atrogin-1 levels in muscles. CONCLUSION These results provide new insight into the effect of TGF-β on muscle contractility and the molecular mechanisms behind TGF-β-mediated muscle atrophy and fibrosis.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Chakkalakal J, Brack A. Extrinsic Regulation of Satellite Cell Function and Muscle Regeneration Capacity during Aging. ACTA ACUST UNITED AC 2012; Suppl 11:001. [PMID: 24678443 PMCID: PMC3965255 DOI: 10.4172/2157-7633.s11-001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optimal regeneration of skeletal muscle in response to injury requires the contribution of tissue resident stem cells termed satellite cells. Normally residing at the interface between the muscle fiber and overlying basal lamina it is generally understood with age the satellite cell pool exhibits decline both in number and function. Over the past decade mechanisms that contribute to these declines have begun to emerge. Implicit in aged-related satellite cell dysfunction and decline is the involvement of signals from the environment. Many of the signals that become deregulated with age have conserved functions during distinct stages of muscle fiber formation both in early development and regeneration. In particular, modulations in Wnt, TGFβ, Notch and FGF emanating from aged skeletal muscle fibers or the systemic milieu have emerged as age-related alterations that significantly impact both the maintenance of the satellite cell pool and skeletal muscle regenerative efficacy. In this review we will summarize how the aforementioned pathways contribute to skeletal muscle development and regeneration. We will then discuss deregulation of these cascades with age and how they contribute to satellite cell depletion and dysfunction. The review will also summarize some of the challenges we face in trying to draw parallels between murine and human satellite cell aging. Finally, we will highlight the few examples whereby FDA approved drugs may be exploited to modulate specific signaling cascades in effort to preserve skeletal muscle regenerative function with age.
Collapse
Affiliation(s)
- Jv Chakkalakal
- Center of Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - As Brack
- Center of Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA ; Harvard Stem Cell Institute, 135 Massachusetts Avenue, Boston, Massachusetts 02138, USA
| |
Collapse
|
17
|
Li Y, Xu Z, Li H, Xiong Y, Zuo B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 2010; 6:350-60. [PMID: 20617128 PMCID: PMC2899453 DOI: 10.7150/ijbs.6.350] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 06/17/2010] [Indexed: 01/05/2023] Open
Abstract
In order to better understand and elucidate the major determinants of red and white muscle phenotypic properties, the global gene expression profiling was performed in white (longissimus doris) and red (soleus) skeletal muscle of Chinese Meishan pigs using the Affymetrix Porcine Genechip. 550 transcripts at least 1.5-fold difference were identified at p < 0.05 level, with 323 showing increased expression and 227 decreased expression in red muscle. Quantitative real-time PCR validated the differential expression of eleven genes (alpha-Actin, ART3, GATA-6, HMOX1, HSP, MYBPH, OCA2, SLC12A4, TGFB1, TGFB3 and TNX). Twenty eight signaling pathways including ECM-receptor interaction, focal adhesion, TGF-beta signaling pathway, MAPK signaling pathway, Wnt signaling pathway, mTOR signaling pathway, insulin signaling pathway and cell cycle, were identified using KEGG pathway database. Our findings demonstrate previously unrecognized changes in gene transcription between red and white muscle, and some potential cascades identified in the study merit further investigation.
Collapse
Affiliation(s)
- Yang Li
- 1. Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zaiyan Xu
- 1. Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hongying Li
- 2. Bioengineering Institute, Shanxi Agricultural University, 030801, P. R. China
| | - Yuanzhu Xiong
- 1. Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Bo Zuo
- 1. Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Peltzer J, Carpentier G, Martelly I, Courty J, Keller A. Transitions towards either slow-oxidative or fast-glycolytic phenotype can be induced in the murine WTt myogenic cell line. J Cell Biochem 2010; 111:82-93. [DOI: 10.1002/jcb.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Immunoneutralization of TGFbeta1 Improves Skeletal Muscle Regeneration: Effects on Myoblast Differentiation and Glycosaminoglycan Content. Int J Cell Biol 2009; 2009:659372. [PMID: 20111627 PMCID: PMC2809363 DOI: 10.1155/2009/659372] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 01/26/2023] Open
Abstract
When injured by crushing, the repair of the slow-twitch soleus rat muscle, unlike the fast-twitch EDL, is associated with fibrosis. As TGFβ1, whose activity can be controlled by glycosaminoglycans (GAG), plays a major role in fibrosis, we hypothesized that levels of TGFβ1 and GAG contents could account for this differential quality of regeneration. Here we show that the regeneration of the soleus was accompanied by elevated and more sustained TGFβ1 level than in the EDL. Neutralization of TGFβ1 effects by antibodies to TGFβ1 or its receptor TGFβ-R1 improved muscle repair, especially of the soleus muscle, increased in vitro growth of myoblasts, and accelerated their differentiation. These processes were accompanied by alterations of GAG contents. These results indicate that the control of TGFβ1 activity is important to improve regeneration of injured muscle and accelerate myoblast differentiation, in part through changes in GAG composition of muscle cell environment.
Collapse
|
20
|
Anderson BC, Christiansen SP, McLoon LK. Myogenic growth factors can decrease extraocular muscle force generation: a potential biological approach to the treatment of strabismus. Invest Ophthalmol Vis Sci 2008; 49:221-9. [PMID: 18172096 DOI: 10.1167/iovs.07-0600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Future pharmacologic treatment of strabismus may be optimized if drugs that are less potentially toxic to patients can be developed. Prior studies have shown that direct injection of extraocular muscles (EOMs) with insulin growth factor or fibroblast growth factor results in significant increases in the generation of EOM force. The purpose of this study was to examine the morphometric and physiological effects of direct EOM injection with the growth factors BMP4, TGFbeta1, Shh, and Wnt3A. METHODS One superior rectus muscle of normal adult rabbits was injected with BMP4, TGFbeta1, Shh, or Wnt3A. The contralateral muscle was injected with an equal volume of saline to serve as a control. After 1 week, the animals were euthanatized, and both superior rectus muscles were removed and assayed physiologically. The muscles were stimulated at increasing frequencies to determine force generation. A separate group of treated and control superior rectus muscles were examined histologically for alterations in total muscle cross-sectional area and myosin heavy chain isoform (MyHC) composition. RESULTS One week after a single injection of BMP4, TGFbeta1, Shh, or Wnt3A, all treated muscles showed significant decreases in generation of force compared with control muscles. BMP4, TGFbeta1, Shh, and Wnt3A significantly decreased the mean myofiber cross-sectional area of fast MyHC-positive myofibers. BMP4 resulted in a conversion of fast-to-slow myofibers and a significant decrease in the percentage of developmental and neonatal MyHC-positive myofibers. Alterations in mean cross-sectional area and proportion of MyHCs were seen after injection with TGFbeta1, Shh, and Wnt3A. TGFbeta1 and BMP4 injections resulted in increased Pax7-positive satellite cells, whereas BMP4, TGFbeta1, and Wnt3A resulted in a decrease in MyoD-positive satellite cells. CONCLUSIONS These results suggest that, rather than using toxins or immunotoxins, a more biological approach to decrease muscle strength is possible and demonstrate the potential utility of myogenic signaling factors for decreasing EOM strength. Ongoing drug-delivery studies will elucidate means of extending treatment effect to make such agents clinically useful.
Collapse
Affiliation(s)
- Brian C Anderson
- Department of Ophthalmology, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
21
|
Peltzer J, Colman L, Cebrian J, Musa H, Peckham M, Keller A. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro. Dev Dyn 2008; 237:1412-23. [DOI: 10.1002/dvdy.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|