1
|
Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. Kettin, the large actin-binding protein with multiple immunoglobulin domains, is essential for sarcomeric actin assembly and larval development in Caenorhabditis elegans. FEBS J 2019; 287:659-670. [PMID: 31411810 DOI: 10.1111/febs.15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin. Kettin is a large actin-binding protein of 472 kDa with 31 immunoglobulin domains and is expressed in muscle cells in C. elegans. let-330/ketn-1 mutants are homozygous lethal at the first larval stage with mild defects in body elongation. These mutants have severe defects in sarcomeric actin and myosin assembly in striated muscle. However, α-actinin and vinculin, which are components of the dense bodies anchoring actin to the membranes, were not significantly disorganized by let-330/ketn-1 mutation. Kettin localizes to embryonic myofibrils before α-actinin is expressed, and α-actinin deficiency does not affect kettin localization in larval muscle. Depletion of vinculin minimally affects kettin localization but significantly reduces colocalization of actin with kettin in embryonic muscle cells. These results indicate that kettin is an essential protein for sarcomeric assembly of actin filaments in muscle cells.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
4
|
Han HF, Beckerle MC. The ALP-Enigma protein ALP-1 functions in actin filament organization to promote muscle structural integrity in Caenorhabditis elegans. Mol Biol Cell 2009; 20:2361-70. [PMID: 19261811 DOI: 10.1091/mbc.e08-06-0584] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations that affect the Z-disk-associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. Here we present a molecular and genetic analysis of ALP-Enigma function in C. elegans. We show that ALP-1 and alpha-actinin colocalize at dense bodies where actin filaments are anchored and that the proper localization of ALP-1 at dense bodies is dependent on alpha-actinin. Our analysis of alp-1 mutants demonstrates that ALP-1 functions to maintain actin filament organization and participates in muscle stabilization during contraction. Reducing alpha-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and alpha-actinin function in the same cellular process. Like alpha-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and alpha-actinin function together to stabilize actin filaments and promote muscle structural integrity.
Collapse
|
5
|
Ono K, Yu R, Ono S. Structural components of the nonstriated contractile apparatuses in the Caenorhabditis elegans gonadal myoepithelial sheath and their essential roles for ovulation. Dev Dyn 2007; 236:1093-105. [PMID: 17326220 PMCID: PMC1994093 DOI: 10.1002/dvdy.21091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovulation in the nematode Caenorhabditis elegans is regulated by complex signal transduction pathways and cell-cell interactions. Myoepithelial sheath cells of the proximal ovary are smooth muscle-like cells that provide contractile forces to push a mature oocyte into the spermatheca for fertilization. Although several genes that regulate sheath contraction have been characterized, basic components of the contractile apparatuses of the myoepithelial sheath have not been extensively studied. We identified major structural proteins of the contractile apparatuses of the myoepithelial sheath and characterized their nonstriated arrangement. Of interest, integrin and perlecan were found only at the dense bodies, whereas they localized to both dense bodies and M-lines in the striated body wall muscle. RNA interference of most of the myofibrillar components impaired ovulation in a soma-specific manner. Our results provide basic information that helps understanding the mechanism of sheath contraction during ovulation and establishing a new model to study morphogenesis of nonstriated muscle.
Collapse
Affiliation(s)
| | | | - Shoichiro Ono
- Correspondence to: Shoichiro Ono, Department of Pathology, Emory University, 615 Michael Street, Whitehead Research Building, Room 105N, Atlanta, GA 30322. E-mail:
| |
Collapse
|
6
|
Ono K, Yu R, Mohri K, Ono S. Caenorhabditis elegans kettin, a large immunoglobulin-like repeat protein, binds to filamentous actin and provides mechanical stability to the contractile apparatuses in body wall muscle. Mol Biol Cell 2006; 17:2722-34. [PMID: 16597697 PMCID: PMC1474806 DOI: 10.1091/mbc.e06-02-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with alpha-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Robinson Yu
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kurato Mohri
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|