1
|
Lubomirov LT, Papadopoulos S, Pütz S, Welter J, Klöckener T, Weckmüller K, Ardestani MA, Filipova D, Metzler D, Metzner H, Staszewski J, Zittrich S, Gagov H, Schroeter MM, Pfitzer G. Aging-related alterations in eNOS and nNOS responsiveness and smooth muscle reactivity of murine basilar arteries are modulated by apocynin and phosphorylation of myosin phosphatase targeting subunit-1. J Cereb Blood Flow Metab 2017; 37:1014-1029. [PMID: 27193035 PMCID: PMC5363478 DOI: 10.1177/0271678x16649402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Aging causes major alterations of all components of the neurovascular unit and compromises brain blood supply. Here, we tested how aging affects vascular reactivity in basilar arteries from young (<10 weeks; y-BA), old (>22 months; o-BA) and old (>22 months) heterozygous MYPT1-T-696A/+ knock-in mice. In isometrically mounted o-BA, media thickness was increased by ∼10% while the passive length tension relations were not altered. Endothelial denudation or pan-NOS inhibition (100 µmol/L L-NAME) increased the basal tone by 11% in y-BA and 23% in o-BA, while inhibition of nNOS (1 µmol/L L-NPA) induced ∼10% increase in both ages. eNOS expression was ∼2-fold higher in o-BA. In o-BA, U46619-induced force was augmented (pEC50 ∼6.9 vs. pEC50 ∼6.5) while responsiveness to DEA-NONOate, electrical field stimulation or nicotine was decreased. Basal phosphorylation of MLC20-S19 and MYPT1-T-853 was higher in o-BA and was reversed by apocynin. Furthermore, permeabilized o-BA showed enhanced Ca2+-sensitivity. Old T-696A/+ BA displayed a reduced phosphorylation of MYPT1-T696 and MLC20, a lower basal tone in response to L-NAME and a reduced eNOS expression. The results indicate that the vascular hypercontractility found in o-BA is mediated by inhibition of MLCP and is partially compensated by an upregulation of endothelial NO release.
Collapse
Affiliation(s)
| | | | - Sandra Pütz
- Institute of Vegetative Physiology, University of Cologne, Germany
| | - Johannes Welter
- Institute of Vegetative Physiology, University of Cologne, Germany
| | - Tim Klöckener
- Institute for Genetics, University of Cologne, Germany
| | | | | | - Dilyana Filipova
- Institute of Vegetative Physiology, University of Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, University of Cologne, Germany
| | - Harald Metzner
- Institute of Vegetative Physiology, University of Cologne, Germany
| | | | - Stefan Zittrich
- Institute of Vegetative Physiology, University of Cologne, Germany
| | - Hristo Gagov
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | | | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Germany
| |
Collapse
|
2
|
Hong K, Lee S, Li R, Yang Y, Tanner MA, Wu J, Hill MA. Adiponectin Receptor Agonist, AdipoRon, Causes Vasorelaxation Predominantly Via a Direct Smooth Muscle Action. Microcirculation 2016; 23:207-20. [PMID: 26728950 DOI: 10.1111/micc.12266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE AdipoRon, an adiponectin receptor agonist, was recently proposed for treating insulin resistance and hyperglycemia. As adiponectin is vasoprotective via NO-mediated signaling, it was hypothesized that adipoRon similarly exerts potentially beneficial vasodilator effects. We therefore examined if adipoRon induces vasorelaxation and via what contributing mechanisms. METHODS Vascular function was assessed in skeletal muscle arteries from rats and cerebral/coronary arteries from mice using pressure and wire myography. RESULTS Using qPCR, mRNA for adiponectin receptors was demonstrated in skeletal muscle, cerebral and coronary arteries. AdipoRon-caused vasorelaxation was not abolished by compound C (10 μM; AMPK inhibitor). Inhibition of endothelium-dependent relaxation with combinations of l-NAME/indomethacin/apamin/TRAM-34 only slightly reduced adipoRon-mediated vasorelaxation in cerebral and coronary arteries. EC-denuded cremaster arteries showed similar relaxant responses to adipoRon as in intact vessels, suggesting adipoRon directly impacts VSMCs. K(+) currents measured in VSMCs isolated from mouse basilar and LAD arteries were not altered by adiopRon. In cremaster arteries, adipoRon induced vasorelaxation without a marked decrease in VSMC [Ca(2+)]i . Adiponectin, itself, caused vasodilation in intact cremaster arteries while failing to cause significant dilation in EC-denuded arteries, consistent with endothelium dependency of adiponectin. CONCLUSIONS AdipoRon exerts vasodilation by mechanisms distinct to adiponectin. The dominant mechanism for adipoRon-induced vasorelaxation occurs independently of endothelium-dependent relaxing factors, AMPK activation, K(+) efflux-mediated hyperpolarization and reductions in cytosolic [Ca(2+)]i .
Collapse
Affiliation(s)
- Kwangseok Hong
- Department of Medical Pharmacology & Physiology, University of Missouri-Columbia, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Sewon Lee
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA.,Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea
| | - Rong Li
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA.,Drug Discovery Research Center, Luzhou Medical College, Luzhou, China
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Miles A Tanner
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jianbo Wu
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA.,Drug Discovery Research Center, Luzhou Medical College, Luzhou, China
| | - Michael A Hill
- Department of Medical Pharmacology & Physiology, University of Missouri-Columbia, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
3
|
Puetz S, Lubomirov LT, Pfitzer G. Regulation of smooth muscle contraction by small GTPases. Physiology (Bethesda) 2010; 24:342-56. [PMID: 19996365 DOI: 10.1152/physiol.00023.2009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Next to changes in cytosolic [Ca(2+)], members of the Rho subfamily of small GTPases, in particular Rho and its effector Rho kinase, also known as ROK or ROCK, emerged as key regulators of smooth muscle function in health and disease. In this review, we will focus on the regulation of the contractile machinery by Rho/ROK signaling and its interaction with PKC and cyclic nucleotide signaling. We will briefly discuss the emerging evidence that remodeling of cortical actin is necessary for contraction.
Collapse
Affiliation(s)
- Sandra Puetz
- Institut für Vegetative Physiologie, Universitaet Koeln, Koeln, Germany,
| | | | | |
Collapse
|