1
|
Kawai M, Stehle R, Pfitzer G, Iorga B. Phosphate has dual roles in cross-bridge kinetics in rabbit psoas single myofibrils. J Gen Physiol 2021; 153:211791. [PMID: 33599680 PMCID: PMC7885270 DOI: 10.1085/jgp.202012755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 11/27/2022] Open
Abstract
In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Köln, Köln, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Köln, Köln, Germany.,Institute of Neurophysiology, University of Köln, Köln, Germany
| | - Bogdan Iorga
- Institute of Vegetative Physiology, University of Köln, Köln, Germany.,Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Wang L, Kazmierczak K, Yuan CC, Yadav S, Kawai M, Szczesna-Cordary D. Cardiac contractility, motor function, and cross-bridge kinetics in N47K-RLC mutant mice. FEBS J 2017; 284:1897-1913. [PMID: 28467684 DOI: 10.1111/febs.14096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
We have investigated the physiology and mechanical profiles of skinned papillary muscle fibers from transgenic mice expressing the N47K mutation in the myosin regulatory light chain (RLC), shown to cause hypertrophic cardiomyopathy in humans. The results were compared with wild-type (WT) mice, both expressing the human ventricular RLC. Rate constants of a cross-bridge (XB) cycle were deduced from tension transients induced by sinusoidal length changes during maximal Ca2+ activation, and were studied as a function of MgATP, MgADP, and Pi concentrations. N47K mutant showed slower XB cycles but higher actin-activated ATPase activity compared with WT. Consequently, N47K exhibited larger tension than WT. K0 (ADP association constant) and K4 (equilibrium constant of force generation) were larger in N47K, and K1 (ATP association constant) was slightly larger in N47K vs. WT, demonstrating stronger nucleotide binding and force generation abilities of the mutant, but no changes in rigor acto-myosin binding were observed. Tension per XB was similar among groups, but N47K exhibited more XB distribution in the attached state. Larger values of tension and higher ATPase in N47K suggested that more cross-bridges participated in tension production in the mutant myocardium compared with WT. In vivo analysis of heart function, performed in ~ 12.5-month-old mice by echocardiography and invasive hemodynamics, demonstrated a significant decrease in dP/dtmax -end-diastolic volume relationship, indicating a depression of ventricular contractility in N47K mice. Our findings suggest that the N47K mutation exerts its action through direct alterations of myosin motor function that ultimately result in pathological hypertrophic remodeling in N47K hearts.
Collapse
Affiliation(s)
- Li Wang
- Departments of Anatomy and Cell Biology and Internal Medicine, University of Iowa, IA, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Masataka Kawai
- Departments of Anatomy and Cell Biology and Internal Medicine, University of Iowa, IA, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
3
|
Gunther LK, Feng HZ, Wei H, Raupp J, Jin JP, Sakamoto T. Effect of N-Terminal Extension of Cardiac Troponin I on the Ca(2+) Regulation of ATP Binding and ADP Dissociation of Myosin II in Native Cardiac Myofibrils. Biochemistry 2016; 55:1887-97. [PMID: 26862665 DOI: 10.1021/acs.biochem.5b01059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac troponin I (cTnI) has a unique N-terminal extension that plays a role in modifying the calcium regulation of cardiac muscle contraction. Restrictive cleavage of the N-terminal extension of cTnI occurs under stress conditions as a physiological adaptation. Recent studies have shown that in comparison with controls, transgenic mouse cardiac myofibrils containing cTnI lacking the N-terminal extension (cTnI-ND) had a lower sensitivity to calcium activation of ATPase, resulting in enhanced ventricular relaxation and cardiac function. To investigate which step(s) of the ATPase cycle is regulated by the N-terminal extension of cTnI, here we studied the calcium dependence of cardiac myosin II ATPase kinetics in isolated cardiac myofibrils. ATP binding and ADP dissociation rates were measured by using stopped-flow spectrofluorimetry with mant-dATP and mant-dADP, respectively. We found that the second-order mant-dATP binding rate of cTnI-ND mouse cardiac myofibrils was 3-fold faster than that of wild-type myofibrils at low Ca(2+) concentrations. The ADP dissociation rate of cTnI-ND myofibrils was positively dependent on calcium concentration, while the wild-type controls were not significantly affected. These data from experiments using native cardiac myofibrils under physiological conditions indicate that modification of the N-terminal extension of cTnI plays a role in the calcium regulation of the kinetics of actomyosin ATPase.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Justin Raupp
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
4
|
Wang L, Bahadir A, Kawai M. High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges. J Muscle Res Cell Motil 2015; 36:227-41. [PMID: 25836331 DOI: 10.1007/s10974-015-9412-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
An increase in ionic strength (IS) lowers Ca(2+) activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca(2+) activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150-300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K 0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k-4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k-2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS.
Collapse
Affiliation(s)
- Li Wang
- School of Nursing, Soochow University, Suzhou, 215006, Jiangsu, China,
| | | | | |
Collapse
|
5
|
Little SC, Biesiadecki BJ, Kilic A, Higgins RSD, Janssen PML, Davis JP. The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac troponin C. J Biol Chem 2012; 287:27930-40. [PMID: 22718768 DOI: 10.1074/jbc.m111.337295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rate-limiting step of cardiac muscle relaxation has been proposed to reside in the myofilament. Both the rates of cross-bridge detachment and Ca(2+) dissociation from troponin C (TnC) have been hypothesized to rate-limit myofilament inactivation. In this study we used a fluorescent TnC to measure both the rate of Ca(2+) dissociation from TnC and the rate of cross-bridge detachment from several different species of ventricular myofibrils. The fluorescently labeled TnC was sensitive to both Ca(2+) dissociation and cross-bridge detachment at low Ca(2+) (presence of EGTA), allowing for a direct comparison between the two proposed rates of myofilament inactivation. Unlike Ca(2+) dissociation from TnC, cross-bridge detachment varied in myofibrils from different species and was rate-limited by ADP release. At subphysiological temperatures (<20 °C), the rate of Ca(2+) dissociation from TnC was faster than the rate of cross-bridge detachment in the presence of ADP. These results support the hypothesis that cross-bridge detachment rate-limits relaxation. However, Ca(2+) dissociation from TnC was not as temperature-sensitive as cross-bridge detachment. At a near physiological temperature (35 °C) and ADP, the rate of cross-bridge detachment may actually be faster than the rate of Ca(2+) dissociation. This provides evidence that there may not be a simple, single rate-limiting step of myofilament inactivation.
Collapse
Affiliation(s)
- Sean C Little
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
6
|
Iorga B, Wang L, Stehle R, Pfitzer G, Kawai M. ATP binding and cross-bridge detachment steps during full Ca²⁺ activation: comparison of myofibril and muscle fibre mechanics by sinusoidal analysis. J Physiol 2012; 590:3361-73. [PMID: 22586213 DOI: 10.1113/jphysiol.2012.228379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Single myofibrils 50–60 μm length and 2–3 μm diameter were isolated from rabbit psoas muscle fibres, and cross-bridge kinetics were studied by small perturbations of the length (∼0.2%) over a range of 15 frequencies (1–250 Hz). The experiments were performed at 15◦C in the presence of 0.05–10 mM MgATP, 8mM phosphate (Pi), 200 mM ionic strength with KAc (acetate), pCa 4.35–4.65, and pH 7.0. Two exponential processes, B and C, were resolved in tension transients. Their apparent rate constants (2πb and 2πc) increased as the [MgATP] was raised from 0.05 mM to 1mM, and then reached saturation at [MgATP] ≥ 1. Given that these rate constants were similar (c/b ∼1.7) at [Pi] ≥ 4 mM, they were combined to achieve an accurate estimate of the kinetic constants: their sum and product were analysed as functions of [MgATP]. These analyses yielded K1 =2.91 ± 0.31 mM −1, k2 =288 ± 36 s−1, and k−2 =10 ± 21 s−1 (±95% confidence limit, n =13 preparations), based on the cross-bridge model: AM+ATP ↔ (step 1) AM.ATP ↔ (step 2) A+M.ATP, where K1 is the ATP association constant (step 1), k2 is the rate constant of the cross-bridge detachment (step 2), and k−2 is the rate constant of its reversal step. These kinetic constants are respectively comparable to those observed in single fibres from rabbit psoas (K1 =2.35 ± 0.31 mM −1, k2 =243 ± 22 s−1, and k−2 =6 ± 14 s−1; n =8 preparations) when analysed by the same methods and under the same experimental conditions. These values are respectively not significantly different from those obtained in myofibrils, indicating that the same kinetic constants can be deduced from myofibril and muscle fibre studies, in terms of ATP binding and cross-bridge detachments steps. The fact that K1 in myofibrils is 1.2 times that in fibres (P≈0.05) may be explained by a small concentration gradient of ATP, ADP and/or Pi in single fibres.
Collapse
Affiliation(s)
- Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|