1
|
Longobardi S, Sher A, Niederer SA. Quantitative mapping of force-pCa curves to whole heart contraction and relaxation. J Physiol 2022; 600:3497-3516. [PMID: 35737959 PMCID: PMC9540007 DOI: 10.1113/jp283352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract The force–pCa (F–pCa) curve is used to characterize steady‐state contractile properties of cardiac muscle cells in different physiological, pathological and pharmacological conditions. This provides a reduced preparation in which to isolate sarcomere mechanisms. However, it is unclear how changes in the F–pCa curve impact emergent whole‐heart mechanics quantitatively. We study the link between sarcomere and whole‐heart function using a multiscale mathematical model of rat biventricular mechanics that describes sarcomere, tissue, anatomy, preload and afterload properties quantitatively. We first map individual cell‐level changes in sarcomere‐regulating parameters to organ‐level changes in the left ventricular function described by pressure–volume loop characteristics (e.g. end‐diastolic and end‐systolic volumes, ejection fraction and isovolumetric relaxation time). We next map changes in the sarcomere‐regulating parameters to changes in the F–pCa curve. We demonstrate that a change in the F–pCa curve can be caused by multiple different changes in sarcomere properties. We demonstrate that changes in sarcomere properties cause non‐linear and, importantly, non‐monotonic changes in left ventricular function. As a result, a change in sarcomere properties yielding changes in the F–pCa curve that improve contractility does not guarantee an improvement in whole‐heart function. Likewise, a desired change in whole‐heart function (i.e. ejection fraction or relaxation time) is not caused by a unique shift in the F–pCa curve. Changes in the F–pCa curve alone cannot be used to predict the impact of a compound on whole‐heart function.
![]() Key points The force–pCa (F–pCa) curve is used to assess myofilament calcium sensitivity after pharmacological modulation and to infer pharmacological effects on whole‐heart function. We demonstrate that there is a non‐unique mapping from changes in F–pCa curves to changes in left ventricular (LV) function. The effect of changes in F–pCa on LV function depend on the state of the heart and could be different for different pathological conditions. Screening of compounds to impact whole‐heart function by F–pCa should be combined with active tension and calcium transient measurements to predict better how changes in muscle function will impact whole‐heart physiology.
Collapse
Affiliation(s)
- Stefano Longobardi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anna Sher
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Steven A Niederer
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J. Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol 2017; 595:4677-4693. [PMID: 28436080 PMCID: PMC5509872 DOI: 10.1113/jp274145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Maike Schuldt
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
3
|
Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing α- and β-myosin heavy chain with sinusoidal analysis. J Muscle Res Cell Motil 2016; 37:203-214. [PMID: 27942960 DOI: 10.1007/s10974-016-9456-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
In mammalian ventricles, two myosin heavy chain (MHC) isoforms have been identified. Small animals express α-MHC, whereas large animals express β-MHC, which contribute to a large difference in the heart rate. Sprague-Dawley rats possessing ~99% α-MHC were treated with propylthiouracil to result in 100% β-MHC. Papillary muscles were skinned, dissected into small fibers, and used for experiments. To understand the functional difference between α-MHC and β-MHC, skinned-fibers were activated under the intracellular ionic conditions: 5 mM MgATP, 1 mM Mg2+, 8 mM Pi, 200 mM ionic strength, pH 7.00 at 25 °C. Small amplitude sinusoidal length oscillations were applied in the frequency range 0.13-100 Hz (corresponding time domain: 1.6-1200 ms), and effects of Ca2+, Pi, and ATP were studied. The results show that Ca2+ sensitivity was slightly less (10-15%) in β-MHC than α-MHC containing fibers. Sinusoidal analysis at pCa 4.66 (full Ca2+ activation) demonstrated that, the apparent rate constants were 2-4× faster in α-MHC containing fibers. The ATP study demonstrated that, in β-MHC containing fibers, K 1 (ATP association constant) was greater (1.7×), k 2 and k -2 (cross-bridge detachment and its reversal rate constants) were smaller (×0.6). The Pi study demonstrated that, in β-MHC containing fibers, k 4 (rate constant of the force-generation step) and k -4 were smaller (0.75× and 0.25×, respectively), resulting in greater K 4 (3×). There were no differences in active tension, rigor stiffness, or K 2 (equilibrium constant of the cross-bridge detachment step). Our study further demonstrated that there were no differences in parameters between fibers obtained from left and right ventricles, but with an exception in K 5 (Pi association constant).
Collapse
|