1
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
2
|
Nagatomo R, Higuchi Y, Takei J, Nakamura T, Hashiguchi H, Takashima H. [A case of myofibrillary myopathy due to Bcl2-Associated Athanogene 3 (BAG3) mutation complicated by peripheral neuropathy]. Rinsho Shinkeigaku 2023; 63:836-842. [PMID: 37989284 DOI: 10.5692/clinicalneurol.cn-001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A 19-year-old female, normal at birth, grew up without neck movement when getting up. She needed a handrail to climb stairs since the age of 10 years old, and walked slowly since the age of 16 years old. Neurological examination revealed loss of deep tendon reflexes, decreased vibratory sensation, weakness of distal muscles of the lower extremities, and weakness of mainly cervical trunk muscles suspected to be due to myopathy. Nerve conduction studies suggested axonal polyneuropathy, and needle EMG showed short duration MUP, myotonic discharge, and rimmed vacuoles on muscle biopsy. Genetic analysis revealed a previously reported pathological mutation (p.P209L, heterozygous) in Bcl2-Associated Athanogene 3 (BAG3), and a diagnosis of MFM6 was made. P209L is a poor prognosis myopathy that develops in childhood and is associated with cardiomyopathy. P209L is a solitary myopathy associated with axonal neuropathy and characterized by apex foot contracture and weak neck to trunk flexion. This disease is suspected in young-onset neuromyopathy.
Collapse
Affiliation(s)
- Risa Nagatomo
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroaki Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
3
|
Zhang Z, Xu K, Ji L, Zhang H, Yin J, Zhou M, Wang C, Yang S. A novel loss-of-function mutation in NRAP is associated with left ventricular non-compaction cardiomyopathy. Front Cardiovasc Med 2023; 10:1097957. [PMID: 36815016 PMCID: PMC9940605 DOI: 10.3389/fcvm.2023.1097957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Background The nebulin-related-anchoring protein (NRAP) gene encodes actin-associated ankyrin. Few studies reported the association of the NRAP gene with cardiomyopathy. Thus, the genetic role of this gene in cardiomyopathy remains to be investigated. Methods The clinical data of the rare case of left ventricular non-compaction (LVNC) were collected and analyzed. Whole-exome sequencing (WES) was performed on related family members. Western blot was used to detect the effect of mutation on the NRAP protein expression. The effect of the c.259delC variant on myocardial development was further evaluated in a zebrafish model. Results A novel homozygous frameshift mutation c.259delC of NRAP was found in the proband with LVNC. It was found that c.259delC decreased the expression of NRAP by Western blot. In the zebrafish model, the heart development was affected while knocking out the NRAP gene, which showed pericardial edema. The pathological manifestations were uneven hypertrophy, disordered arrangement of cardiomyocytes, enlarged intercellular space, and loose muscle fibers. RNA-sequencing (RNA-seq) showed that the expression of genes related to heart development decreased significantly, and the NRAP gene mutation could participate in biological processes (BPs) such as myocardial contraction, cell adhesion, myosin coarse filament assembly of striated muscle, myosin complex composition, and muscle α-actin binding. Conclusion We identified a rare case of LVNC associated with a novel homozygous NRAP frameshift variant. This study further strengthened the evidence linking mutations in the NRAP gene with LVNC, providing a new clue for further study of LVNC. NRAP may be one of the pathogenic genes of cardiomyopathy.
Collapse
Affiliation(s)
- Zhongman Zhang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Xu
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lianfu Ji
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China,Chunli Wang,
| | - Shiwei Yang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Shiwei Yang,
| |
Collapse
|
4
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Wide Spectrum of Cardiac Phenotype in Myofibrillar Myopathy Associated With a Bcl-2-Associated Athanogene 3 Mutation: A Case Report and Literature Review. J Clin Neuromuscul Dis 2022; 24:49-54. [PMID: 36005473 DOI: 10.1097/cnd.0000000000000392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myofibrillar myopathy is a clinically and genetically heterogeneous group of muscle disorders characterized by myofibrillar degeneration. Bcl-2-associated athanogene 3 (BAG3)-related myopathy is the rarest form of myofibrillar myopathy. Patients with BAG3-related myopathy present with early-onset and progressive muscle weakness, rigid spine, respiratory insufficiency, and cardiomyopathy. Notably, the heterozygous mutation (Pro209Leu) in BAG3 is commonly associated with rapidly progressive cardiomyopathy in childhood. We describe a male patient with the BAG3 (Pro209Leu) mutation. The patient presented at age 7 years with muscle weakness predominantly in the proximal lower limbs. Histologic findings revealed a mixture of severe neurogenic and myogenic changes. His motor symptoms progressed rapidly in the next decade, becoming wheelchair-dependent by age 17 years; however, at the age of 19 years, cardiomyopathy was not evident. This study reports a case of BAG3-related myopathy without cardiac involvement and further confirmed the wide phenotypic spectrum of BAG3-related myopathy.
Collapse
|
6
|
Zhan L, Lv L, Chen X, Xu X, Ni J. Ultrasound evaluation of diaphragm motion in BAG-3 myofibrillar myopathy: A case report. Medicine (Baltimore) 2022; 101:e28484. [PMID: 35029900 PMCID: PMC8735720 DOI: 10.1097/md.0000000000028484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Mutations in Bcl-2-associated athanogene-3 (BAG-3) can cause a rare subtype of myofibrillar myopathies (MFMs), characterized by progressive muscle weakness, cardiomyopathy, and severe respiratory insufficiency in childhood. Little is known about diaphragmatic function in BAG-3 MFM. To our knowledge, this is the first case report of detailed evaluation of diaphragmatic function with ultrasound in BAG-3 MFM. PATIENT CONCERN We describe the case of a 15-year-old girl who complained of fever and shortness of breath. Diaphragmatic sonography revealed bilateral diaphragmatic paralysis. Shortness of breath progressed to respiratory failure approximately 3 months later. DIAGNOSIS A neurologist was consulted and genetic sequencing identified a p.Pro209Leu mutation in BAG-3, yielding diagnosis of BAG-3 MFM leading to bilateral diaphragmatic paralysis. INTERVENTIONS Respiratory muscle training and long-term mechanical ventilation. OUTCOMES It is quite unfortunate for this patient to have a poor prognosis due to the lack of effective treatment for this genetic disorder. LESSONS This case provides more clinical information for this rare disease which may cause severe diaphragm pathological damage leading to respiratory failure in BAG3 MFM and a future study with a systematic evaluation of a greater number of patients will be necessary to characterize this population.
Collapse
Affiliation(s)
- Liqiong Zhan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lan Lv
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiang Xu
- Department of Ultrasound Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
8
|
Scarpini G, Valentino ML, Giannotta M, Ragni L, Torella A, Columbaro M, Nigro V, Pini A. BAG3-related myofibrillar myopathy: a further observation with cardiomyopathy at onset in pediatric age. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:177-183. [PMID: 35047758 PMCID: PMC8744013 DOI: 10.36185/2532-1900-061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022]
Abstract
Myofibrillar myopathies are a heterogeneous group of neuromuscular disorders characterized by degeneration of Z-disk, causing the disintegration of myofibrils. They may be caused by mutations in different genes, among these, the BAG3 gene (Bcl-2 associed-athanogene-3) encodes a multidomain protein that plays an important role in many cellular processes. We report the case of a 16-year-old male who at 4 years of age presented with a hypertrophic obstructive cardiomyopathy, then developed axonal sensory motor polyneuropathy, muscle weakness, rigid spine, severe kyphoscoliosis and respiratory failure. Muscle biopsy showed the typical hallmark of myofibrillar myopathy with abnormal cytoplasmic expression of multiple proteins. Ade novo heterozygous common mutation in the BAG3 gene with a c.626C > T (p.Pro209Leu) was discovered on NGS genetic analysis. Mutations in the BAG3 gene are causes of a severe and progressive condition and natural history data are important to be collected. An early diagnosis is critical for prognostic implications in cardiomyopathy and respiratory failure treatment.
Collapse
Affiliation(s)
- Gaia Scarpini
- Neuromuscular Pediatric Unit, UOC di Neuropsichiatria dell’età pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- UOC di Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Melania Giannotta
- Neuromuscular Pediatric Unit, UOC di Neuropsichiatria dell’età pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Ragni
- Pediatric Cardiology, University of Bologna, Bologna, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Università della Campania “Luigi Vanvitelli”, Pozzuoli, Naples, Italy
| | - Marta Columbaro
- SC Musculoskeletal Cell Biology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Bologna, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Università della Campania “Luigi Vanvitelli”, Pozzuoli, Naples, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, UOC di Neuropsichiatria dell’età pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy,Correspondence Antonella Pini UOC pediatric Neurology and Psychiatry, IRCCS – Istituto delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy. Tel.: +39 051 6225111 E-mail:
| |
Collapse
|
9
|
Jirka C, Pak JH, Grosgogeat CA, Marchetii MM, Gupta VA. Dysregulation of NRAP degradation by KLHL41 contributes to pathophysiology in nemaline myopathy. Hum Mol Genet 2021; 28:2549-2560. [PMID: 30986853 DOI: 10.1093/hmg/ddz078] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific adaptors for Cullin 3 (CUL3) E3 ubiquitin ligase to regulate protein turnover through the ubiquitin-proteasome machinery. Defects in thin filament formation and/or stability are key molecular processes that underlie the disease pathology in NM; however, the role of Kelch proteins in these processes in normal and diseases conditions remains elusive. Here, we describe a role of NM causing Kelch protein, KLHL41, in premyofibil-myofibil transition during skeletal muscle development through a regulation of the thin filament chaperone, nebulin-related anchoring protein (NRAP). KLHL41 binds to the thin filament chaperone NRAP and promotes ubiquitination and subsequent degradation of NRAP, a process that is critical for the formation of mature myofibrils. KLHL41 deficiency results in abnormal accumulation of NRAP in muscle cells. NRAP overexpression in transgenic zebrafish resulted in a severe myopathic phenotype and absence of mature myofibrils demonstrating a role in disease pathology. Reducing Nrap levels in KLHL41 deficient zebrafish rescues the structural and function defects associated with disease pathology. We conclude that defects in KLHL41-mediated ubiquitination of sarcomeric proteins contribute to structural and functional deficits in skeletal muscle. These findings further our understanding of how the sarcomere assembly is regulated by disease-causing factors in vivo, which will be imperative for developing mechanism-based specific therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Jirka
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine H Pak
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire A Grosgogeat
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
BAG3 Myopathy Presenting With Prominent Neuropathic Phenotype and No Cardiac or Respiratory Involvement: A Case Report and Literature Review. J Clin Neuromuscul Dis 2021; 21:230-239. [PMID: 32453099 DOI: 10.1097/cnd.0000000000000300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bcl-2-associated athanogene 3 (BAG3) myopathy is a rare myofibrillar myopathy characterized by toe walking and clumsiness in the first decade with rapid progression to cardiomyopathy and restrictive lung disease in the second decade. Most patients (18 patients) have the c.626C >T (p.Pro209Leu) mutation. We describe BAG3 myopathy due to p.Pro209Leu in a 13-year-old girl with initial prominent neuropathic phenotype and no cardiac or respiratory involvement. Parents reported toe walking and clumsiness since 3 years old. Examination at the age of 13 years showed findings suggestive of Charcot-Marie-Tooth disease. Nerve conduction studies revealed demyelinating polyneuropathy. Next-generation sequencing panel for inherited neuropathies was unrevealing. Whole exome sequencing identified a de novo mutation in BAG3. Muscle biopsy confirmed myofibrillar myopathy. No cardiac involvement or symptoms of respiratory involvement at the age of 14 years. This case emphasizes the phenotypic variability of BAG3 myopathy and the importance of thorough electrophysiological examination and muscle pathology for establishing a precise diagnosis.
Collapse
|
11
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
12
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
13
|
Robertson R, Conte TC, Dicaire MJ, Rymar VV, Sadikot AF, Bryson-Richardson RJ, Lavoie JN, O'Ferrall E, Young JC, Brais B. BAG3 P215L/KO Mice as a Model of BAG3 P209L Myofibrillar Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:554-562. [PMID: 31953038 DOI: 10.1016/j.ajpath.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
BCL-2-associated athanogene 3 (BAG3) is a co-chaperone to heat shock proteins important in degrading misfolded proteins through chaperone-assisted selective autophagy. The recurrent dominant BAG3-P209L mutation results in a severe childhood-onset myofibrillar myopathy (MFM) associated with progressive muscle weakness, cardiomyopathy, and respiratory failure. Because a homozygous knock-in (KI) strain for the mP215L mutation homologous to the human P209L mutation did not have a gross phenotype, compound heterozygote knockout (KO) and KI mP215L mice were generated to establish whether further reduction in BAG3 expression would lead to a phenotype. The KI/KO mice have a significant decrease in voluntary movement compared with wild-type and KI/KI mice in the open field starting at 7 months. The KI/KI and KI/KO mice both have significantly smaller muscle fiber cross-sectional area. However, only the KI/KO mice have clear skeletal muscle histologic changes in MFM. As in patient muscle, there are increased levels of BAG3-interacting proteins, such as p62, heat shock protein B8, and αB-crystallin. The KI/KO mP215L strain is the first murine model of BAG3 myopathy that resembles the human skeletal muscle pathologic features. The results support the hypothesis that the pathologic development of MFM requires a significant decrease in BAG3 protein level and not only a gain of function caused by the dominant missense mutation.
Collapse
Affiliation(s)
- Rebecca Robertson
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Talita C Conte
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Abbas F Sadikot
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Josée N Lavoie
- Centre de Recherche sur le Cancer, l'Université Laval, Québec, Quebec, Canada; Oncology Axis, Centre de Recherche du Centre Hospitalier Universitaire (CHU), Québec-Université Laval, Québec, Quebec, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, l'Université Laval, Québec, Quebec, Canada
| | - Erin O'Ferrall
- Rare Neurological Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bernard Brais
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Personalized prediction of genes with tumor-causing somatic mutations based on multi-modal deep Boltzmann machine. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.02.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Cicardi ME, Cristofani R, Crippa V, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Galbiati M, Piccolella M, Messi E, Carra S, Pennuto M, Rusmini P, Poletti A. Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Front Endocrinol (Lausanne) 2019; 10:569. [PMID: 31481932 PMCID: PMC6710630 DOI: 10.3389/fendo.2019.00569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease (MND) caused by a mutant androgen receptor (AR) containing an elongated polyglutamine (polyQ) tract. ARpolyQ toxicity is triggered by androgenic AR ligands, which induce aberrant conformations (misfolding) of the ARpolyQ protein that aggregates. Misfolded proteins perturb the protein quality control (PQC) system leading to cell dysfunction and death. Spinal cord motoneurons, dorsal root ganglia neurons and skeletal muscle cells are affected by ARpolyQ toxicity. Here, we found that, in stabilized skeletal myoblasts (s-myoblasts), ARpolyQ formed testosterone-inducible aggregates resistant to NP-40 solubilization; these aggregates did not affect s-myoblasts survival or viability. Both wild type AR and ARpolyQ were processed via proteasome, but ARpolyQ triggered (and it was also cleared via) autophagy. ARpolyQ reduced two pro-autophagic proteins expression (BAG3 and VCP), leading to decreased autophagic response in ARpolyQ s-myoblasts. Overexpression of two components of the chaperone assisted selective autophagy (CASA) complex (BAG3 and HSPB8), enhanced ARpolyQ clearance, while the treatment with the mTOR independent autophagy activator trehalose induced complete ARpolyQ degradation. Thus, trehalose has beneficial effects in SBMA skeletal muscle models even when autophagy is impaired, possibly by stimulating CASA to assist the removal of ARpolyQ misfolded species/aggregates.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Centro Interdipartimentale di Neuroscienze e Neurotecnologie (CfNN), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Maria Pennuto
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
- Centro InterUniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Milan, Italy
- *Correspondence: Angelo Poletti
| |
Collapse
|
16
|
Andersen AG, Fornander F, Schrøder HD, Krag T, Straub V, Duno M, Vissing J. BAG3 myopathy is not always associated with cardiomyopathy. Neuromuscul Disord 2018; 28:798-801. [DOI: 10.1016/j.nmd.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/03/2018] [Accepted: 06/30/2018] [Indexed: 02/05/2023]
|
17
|
Finsterer J, Zarrouk-Mahjoub S. BAG3-related myofibrillar myopathy requiring heart transplantation for restrictive cardiomyopathy. Mol Genet Metab Rep 2018; 15:65-66. [PMID: 30023292 PMCID: PMC6047054 DOI: 10.1016/j.ymgmr.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar, Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
18
|
Schänzer A, Rupp S, Gräf S, Zengeler D, Jux C, Akintürk H, Gulatz L, Mazhari N, Acker T, Van Coster R, Garvalov BK, Hahn A. Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3. Mol Genet Metab 2018; 123:388-399. [PMID: 29338979 DOI: 10.1016/j.ymgme.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Myofibrillary myopathies (MFM) are hereditary myopathies histologically characterized by degeneration of myofibrils and aggregation of proteins in striated muscle. Cardiomyopathy is common in MFM but the pathophysiological mechanisms are not well understood. The BAG3-Pro209Leu mutation is associated with early onset MFM and severe restrictive cardiomyopathy (RCM), often necessitating heart transplantation during childhood. We report on a young male patient with a BAG3-Pro209Leu mutation who underwent heart transplantation at eight years of age. Detailed morphological analyses of the explanted heart tissue showed intracytoplasmic inclusions, aggregation of BAG3 and desmin, disintegration of myofibers and Z-disk alterations. The presence of undegraded autophagosomes, seen by electron microscopy, as well as increased levels of p62, LC3-I and WIPI1, detected by immunohistochemistry and western blot analyses, indicated a dysregulation of autophagy. Parkin and PINK1, proteins involved in mitophagy, were slightly increased whereas mitochondrial OXPHOS activities were not altered. These findings indicate that altered autophagy plays a role in the pathogenesis and rapid progression of RCM in MFM caused by the BAG3-Pro209Leu mutation, which could have implications for future therapeutic strategies.
Collapse
Affiliation(s)
- A Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - S Rupp
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - S Gräf
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - D Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, 72076 Tübingen, Germany
| | - C Jux
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - H Akintürk
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - L Gulatz
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - N Mazhari
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - T Acker
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - R Van Coster
- Division of Child Neurology, Department of Pediatrics, University Hospital Gent, 9000 Gent, Belgium
| | - B K Garvalov
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany; Department of Microvascular Biology and Pathobiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
19
|
Ramirez-Martinez A, Cenik BK, Bezprozvannaya S, Chen B, Bassel-Duby R, Liu N, Olson EN. KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. eLife 2017; 6:26439. [PMID: 28826497 PMCID: PMC5589419 DOI: 10.7554/elife.26439] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of muscle function requires assembly of contractile proteins into highly organized sarcomeres. Mutations in Kelch-like protein 41 (KLHL41) cause nemaline myopathy, a fatal muscle disorder associated with sarcomere disarray. We generated KLHL41 mutant mice, which display lethal disruption of sarcomeres and aberrant expression of muscle structural and contractile proteins, mimicking the hallmarks of the human disease. We show that KLHL41 is poly-ubiquitinated and acts, at least in part, by preventing aggregation and degradation of Nebulin, an essential component of the sarcomere. Furthermore, inhibition of KLHL41 poly-ubiquitination prevents its stabilization of nebulin, suggesting a unique role for ubiquitination in protein stabilization. These findings provide new insights into the molecular etiology of nemaline myopathy and reveal a mechanism whereby KLHL41 stabilizes sarcomeres and maintains muscle function by acting as a molecular chaperone. Similar mechanisms for protein stabilization likely contribute to the actions of other Kelch proteins.
Collapse
Affiliation(s)
- Andres Ramirez-Martinez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bercin Kutluk Cenik
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Homozygous truncating mutation in NRAP gene identified by whole exome sequencing in a patient with dilated cardiomyopathy. Sci Rep 2017; 7:3362. [PMID: 28611399 PMCID: PMC5469774 DOI: 10.1038/s41598-017-03189-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/25/2017] [Indexed: 11/08/2022] Open
Abstract
The genetic background of dilated cardiomyopathy is highly heterogeneous, with close to 100 known genes and a number of candidates described to date. Nebulin-related-anchoring protein (NRAP) is an actin-binding cytoskeletal protein expressed predominantly in striated and cardiac muscles, and is involved in myofibrillar assembly in the foetal heart and in force transmission in the adult heart. The homozygous NRAP truncating variant (rs201084642), which is predicted to introduce premature stop codon into all NRAP isoforms, was revealed in the dilated cardiomyopathy patient using whole exome sequencing. The same genotype was detected in the asymptomatic proband's brother. The expression of the NRAP protein was undetectable in the patient's heart muscle by the Western blot. Genotyping for rs201084642 in the ethnically matched cohort of 231 dilated cardiomyopathy patients did not reveal any additional subjects with this variant. Our findings suggest that the biallelic loss-of-function mutation in NRAP could constitute a relatively rare, low-penetrance genetic risk factor for dilated cardiomyopathy.
Collapse
|