1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Hwang SY, Liu H, Lee SS. Dysregulated Calcium Handling in Cirrhotic Cardiomyopathy. Biomedicines 2023; 11:1895. [PMID: 37509534 PMCID: PMC10377313 DOI: 10.3390/biomedicines11071895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cirrhotic cardiomyopathy is a syndrome of blunted cardiac systolic and diastolic function in patients with cirrhosis. However, the mechanisms remain incompletely known. Since contractility and relaxation depend on cardiomyocyte calcium transients, any factors that impact cardiac contractile and relaxation functions act eventually through calcium transients. In addition, calcium transients play an important role in cardiac arrhythmias. The present review summarizes the calcium handling system and its role in cardiac function in cirrhotic cardiomyopathy and its mechanisms. The calcium handling system includes calcium channels on the sarcolemmal plasma membrane of cardiomyocytes, the intracellular calcium-regulatory apparatus, and pertinent proteins in the cytosol. L-type calcium channels, the main calcium channel in the plasma membrane of cardiomyocytes, are decreased in the cirrhotic heart, and the calcium current is decreased during the action potential both at baseline and under stimulation of beta-adrenergic receptors, which reduces the signal to calcium-induced calcium release. The study of sarcomere length fluctuations and calcium transients demonstrated that calcium leakage exists in cirrhotic cardiomyocytes, which decreases the amount of calcium storage in the sarcoplasmic reticulum (SR). The decreased storage of calcium in the SR underlies the reduced calcium released from the SR, which results in decreased cardiac contractility. Based on studies of heart failure with non-cirrhotic cardiomyopathy, it is believed that the calcium leakage is due to the destabilization of interdomain interactions (dispersion) of ryanodine receptors (RyRs). A similar dispersion of RyRs may also play an important role in reduced contractility. Multiple defects in calcium handling thus contribute to the pathogenesis of cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Sang Youn Hwang
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Department of Internal Medicine, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Republic of Korea
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Gerzen OP, Votinova VO, Potoskueva IK, Nabiev SR, Nikitina LV. Characteristics of Actin—Myosin Interaction in Different Regions of Rat Heart. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Wakefield JI, Bell SP, Palmer BM. Inorganic phosphate accelerates cardiac myofilament relaxation in response to lengthening. Front Physiol 2022; 13:980662. [PMID: 36171969 PMCID: PMC9510985 DOI: 10.3389/fphys.2022.980662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial relaxation in late systole is enhanced by increasing velocities of lengthening. Given that inorganic phosphate (Pi) can rebind to the force-producing myosin enzyme prior to MgADP release and hasten crossbridge detachment, we hypothesized that myocardial relaxation in late systole would be further enhanced by lengthening in the presence of Pi. Wistar rat left ventricular papillary muscles were attached to platinum clips, placed between a force transducer and a length motor at room temperature, and bathed in Krebs solution with 1.8 mM Ca2+ and varying Pi of 0, 1, 2, and 5 mM. Tension transients were elicited by electrical stimulation at 1 Hz. Peak tension was significantly enhanced by Pi: 0.593 ± 0.088 mN mm−2 at 0 mM Pi and 0.817 ± 0.159 mN mm−2 at 5 mM Pi (mean ± SEM, p < 0.01 by ANCOVA). All temporal characteristics of the force transient were significantly shortened with increasing Pi, e.g., time-to-50% recovery was shortened from 305 ± 14 ms at 0 mM Pi to 256 ± 10 ms at 5 mM Pi (p < 0.01). A 1% lengthening stretch with varying duration of 10–200 ms was applied at time-to-50% recovery during the descending phase of the force transient. Matching lengthening stretches were also applied when the muscle was not stimulated, thus providing a control for the passive viscoelastic response. After subtracting the passive from the active force response, the resulting myofilament response demonstrated features of faster myofilament relaxation in response to the stretch. For example, time-to-70% relaxation with 100 ms lengthening duration was shortened by 8.8 ± 6.8 ms at 0 Pi, 19.6 ± 4.8* ms at 1 mM Pi, 31.0 ± 5.6* ms at 2 Pi, and 25.6 ± 5.3* ms at 5 mM Pi (*p < 0.01 compared to no change). Using skinned myocardium, half maximally calcium-activated myofilaments underwent a 1% quick stretch, and the tension response was subjected to analysis for sensitivity of myosin detachment rate to stretch, g1, at various Pi concentrations. The parameter g1 was enhanced from 15.39 ± 0.35 at 0 Pi to 22.74 ± 1.31 s−1/nm at 8 Pi (p < 0.01). Our findings suggest that increasing Pi at the myofilaments enhances lengthening-induced relaxation by elevating the sensitivity of myosin crossbridge detachment due to lengthening and thus speed the transition from late-systole to early-diastole.
Collapse
Affiliation(s)
- Jane I. Wakefield
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Stephen P. Bell
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- *Correspondence: Bradley M. Palmer,
| |
Collapse
|
5
|
Rodrigues da Silva R, Baptista de Souza Filho O, Bassani JWM, Bassani RA. The ForceLAB simulator: Application to the comparison of current models of cardiomyocyte contraction. Comput Biol Med 2021; 131:104240. [PMID: 33556894 DOI: 10.1016/j.compbiomed.2021.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Mathematical models are useful tools in the study of physiological phenomena. However, due to differences in assumptions and formulations, discrepancy in simulations may occur. Among the models for cardiomyocyte contraction based on Huxley's cross-bridge cycling, those proposed by Negroni and Lascano (NL) and Rice et al. (RWH) are the most frequently used. This study was aimed at developing a computational tool, ForceLAB, which allows implementing different contraction models and modifying several functional parameters. As an application, electrically-stimulated twitches triggered by an equal Ca2+ input and steady-state force x pCa relationship (pCa = -log of the molar free Ca2+ concentration) simulated with the NL and RWH models were compared. The equilibrium Ca2+-troponin C (TnC) dissociation constant (Kd) was modified by changing either the association (kon) or the dissociation (koff) rate constant. With the NL model, raising Kd by either maneuver decreased monotonically twitch amplitude and duration, as expected. With the RWH model, in contrast, the same Kd variation caused increase or decrease of peak force depending on which rate constant was modified. Additionally, force x pCa curves simulated using Ca2+ binding constants estimated in cardiomyocytes bearing wild-type and mutated TnC were compared to curves previously determined in permeabilized fibers. Mutations increased kon and koff, and decreased Kd. Both models produced curves fairly comparable to the experimental ones, although sensitivity to Ca2+ was greater, especially with RWH model. The NL model reproduced slightly better the qualitative changes associated with the mutations. It is expected that this tool can be useful for teaching and investigation.
Collapse
Affiliation(s)
- Robson Rodrigues da Silva
- Research and Technology Center, University of Mogi Das Cruzes, Mogi Das Cruzes, SP, Brazil; LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil.
| | | | - José Wilson Magalhães Bassani
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil; Department of Biomedical Engineering, School of Electrical and Computing Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rosana Almada Bassani
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
6
|
Xin Y, Tang L, Chen J, Chen D, Wen W, Han F. Inhibition of miR‑101‑3p protects against sepsis‑induced myocardial injury by inhibiting MAPK and NF‑κB pathway activation via the upregulation of DUSP1. Int J Mol Med 2021; 47:20. [PMID: 33448324 PMCID: PMC7849984 DOI: 10.3892/ijmm.2021.4853] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have found that microRNAs (miRNAs or miRs) are aberrantly expressed when sepsis occurs. The present study aimed to investigate the role of miR-101-3p in sepsis-induced myocardial injury and to elucidate the underlying mechanisms. Models of myocardial injury were established both in vivo and in vitro. The results revealed that miR-101-3p was upregulated in the serum of patients with sepsis-induced cardiomyopathy (SIC) and positively correlated with the levels of pro-inflammatory cytokines (including IL-1β, IL-6 and TNF-α). Subsequently, rats were treated with miR-101-3p inhibitor to suppress miR-101-3p and were then exposed to lipopolysaccharide (LPS). The results revealed that LPS induced marked cardiac dysfunction, apoptosis and inflammation. The inhibition of miR-101-3p markedly attenuated sepsis-induced myocardial injury by attenuating apoptosis and the expression of pro-inflammatory cytokines. Mechanistically, dual specificity phosphatase-1 (DUSP1) was found to be a functional target of miR-101-3p. The downregulation of miR-101-3p led to the overexpression of DUSP1, and the inactivation of the MAPK p38 and NF-κB pathways. Moreover, blocking DUSP1 by short hairpin RNA against DUSP1 (sh-DUSP1) significantly reduced the myocardial protective effects mediated by the inhibition of miR-101-3p. Collectively, the findings of the present study demonstrate that the inhibition of miR-101-3p exerts cardioprotective effects by suppressing MAPK p38 and NF-κB pathway activation, and thus attenuating inflammation and apoptosis dependently by enhancing DUSP1 expression.
Collapse
Affiliation(s)
- Ye Xin
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dong Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen Wen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fugang Han
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
7
|
Kawai M, Karam TS, Kolb J, Wang L, Granzier HL. Nebulin increases thin filament stiffness and force per cross-bridge in slow-twitch soleus muscle fibers. J Gen Physiol 2018; 150:1510-1522. [PMID: 30301869 PMCID: PMC6219688 DOI: 10.1085/jgp.201812104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023] Open
Abstract
Nebulin stabilizes the thin filament and regulates force generation in skeletal muscle, but its precise role is not understood. Using conditional knockout mice, Kawai et al. demonstrate that nebulin functions to increase the force per cross-bridge in skinned slow-twitch soleus muscle fibers. Nebulin (Neb) is associated with the thin filament in skeletal muscle cells, but its functions are not well understood. For this goal, we study skinned slow-twitch soleus muscle fibers from wild-type (Neb+) and conditional Neb knockout (Neb−) mice. We characterize cross-bridge (CB) kinetics and the elementary steps of the CB cycle by sinusoidal analysis during full Ca2+ activation and observe that Neb increases active tension 1.9-fold, active stiffness 2.7-fold, and rigor stiffness 3.0-fold. The ratio of stiffness during activation and rigor states is 62% in Neb+ fibers and 68% in Neb− fibers. These are approximately proportionate to the number of strongly attached CBs during activation. Because the thin filament length is 15% shorter in Neb− fibers than in Neb+ fibers, the increase in force per CB in the presence of Neb is ∼1.5 fold. The equilibrium constant of the CB detachment step (K2), its rate (k2), and the rate of the reverse force generation step (k−4) are larger in Neb+ fibers than in Neb− fibers. The rates of the force generation step (k4) and the reversal detachment step (k−2) change in the opposite direction. These effects can be explained by Le Chatelier’s principle: Increased CB strain promotes less force-generating state(s) and/or detached state(s). Further, when CB distributions among the six states are calculated, there is no significant difference in the number of strongly attached CBs between fibers with and without Neb. These results demonstrate that Neb increases force per CB. We also confirm that force is generated by isomerization of actomyosin (AM) from the AM.ADP.Pi state (ADP, adenosine diphophate; Pi, phosphate) to the AM*ADP.Pi state, where the same force is maintained after Pi release to result in the AM*ADP state. We propose that Neb changes the actin (and myosin) conformation for better ionic and hydrophobic/stereospecific AM interaction, and that the effect of Neb is similar to that of tropomyosin.
Collapse
Affiliation(s)
- Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA
| | - Tarek S Karam
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA.,School of Nursing, Soochow University, Suzhou, China
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
8
|
Kawai M, Johnston JR, Karam T, Wang L, Singh RK, Pinto JR. Myosin Rod Hypophosphorylation and CB Kinetics in Papillary Muscles from a TnC-A8V KI Mouse Model. Biophys J 2017; 112:1726-1736. [PMID: 28445763 DOI: 10.1016/j.bpj.2017.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
The cardiac troponin C (TnC)-A8V mutation is associated with hypertrophic and restrictive cardiomyopathy (HCM and RCM) in human and mice. The residue affected lies in the N-helix, a region known to affect Ca2+-binding affinity to the N-terminal domain. Here we report on the functional effects of this mutation in skinned papillary muscle fibers from homozygous knock-in TnC-A8V mice. Muscle fibers from left ventricle were activated at 25°C under the ionic conditions of working cardiomyocytes. The pCa-tension relationship showed a 3× increase in Ca2+-sensitivity and a decrease (0.8×) in cooperativity (nH) in mutant fibers. The elementary steps of the cross-bridge (CB) cycle were investigated by sinusoidal analysis. The ATP study revealed that there is no significant change in the affinity of ATP (K1) for the myosin head. In TnC-A8V mutant fibers, the CB detachment rate (k2) and its equilibrium constant (K2) increased (1.5×). The phosphate study revealed that rate constant of the force-generation step (k4) decreased (0.5×), reversal step (k-4) increased (2×), and the phosphate-release step (1/K5) increased (2×). Pro-Q Diamond staining of the skinned fibers samples revealed no significant changes in total phosphorylation of multiple sarcomeric proteins. Further investigation using liquid chromatography-tandem mass spectrometry revealed hypophosphorylation of the rod domain of myosin heavy chain in TnC-A8V mutant fibers compared to wild-type. Immunoblotting confirmed the results observed in the mass spectrometry analysis. The results suggest perturbed CB kinetics-possibly caused by changes in the α-myosin heavy chain phosphorylation profile-as a novel mechanism, to our knowledge, by which a mutation in TnC can have rippling effects in the myofilament and contribute to the pathogenesis of HCM/RCM.
Collapse
Affiliation(s)
- Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee, Florida
| | - Tarek Karam
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa; School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, The Florida State University, Tallahassee, Florida
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee, Florida
| |
Collapse
|