1
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
2
|
Decellularized Porcine Pericardium Enhances Autologous Vascularized Matrix as a Prosthesis for Left Ventricular Full-Wall Myocardial Reconstruction. PROSTHESIS 2023. [DOI: 10.3390/prosthesis5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regenerative grafts for myocardial reconstruction are often mechanically not stable enough to withstand the left ventricle’s high blood pressure. Hence, decellularized pericardium may serve as a stabilizing structure for biological myocardium prostheses. The efficacy of detergent- and enzyme-based protocols to decellularize porcine pericardium was compared. Then, the decellularized pericardium was employed for a primary cover of a transmural left ventricular defect in minipigs (n = 9). This pericardium patch was applied to mitigate the high-pressure load on an autologous stomach tissue, which was utilized as a regenerative tissue prosthesis. Decellularization of the porcine pericardium with deoxycholic acid (DOA)- and enzyme-based protocols (trypsin/EDTA) removed 90% of the original cells (p < 0.001). The trypsin/EDTA protocol significantly altered the matrix architecture compared to the DOA protocol. There were no infections or clinical signs of graft rejection following the transplantation of the decellularized pericardium and the autologous segment of the stomach in the surviving animals (n = 7). A good left ventricular function could be detected via MRI six months following surgery. The biological integration of the graft into the host’s tissue was found histologically. The stabilization of initially fragile grafts with decellularized pericardium facilitates the application of regenerative myocardial prostheses even on the left ventricle.
Collapse
|
3
|
Qazi REM, Khan I, Haneef K, Malick TS, Naeem N, Ahmad W, Salim A, Mohsin S. Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model. World J Stem Cells 2022; 14:633-657. [PMID: 36157910 PMCID: PMC9453269 DOI: 10.4252/wjsc.v14.i8.633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide. Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tissue. Cardiac tissue engineering using biomaterial scaffolds combined with stem cells and bioactive molecules could be a highly promising approach for cardiac repair. Use of biomaterials can provide suitable microenvironment to the cells and can solve cell engraftment problems associated with cell transplantation alone. Mesenchymal stem cells (MSCs) are potential candidates in cardiac tissue engineering because of their multilineage differentiation potential and ease of isolation. Use of DNA methyl transferase inhibitor, such as zebularine, in combination with three-dimensional (3D) scaffold can promote efficient MSC differentiation into cardiac lineage, as epigenetic modifications play a fundamental role in determining cell fate and lineage specific gene expression.
AIM To investigate the role of collagen scaffold and zebularine in the differentiation of rat bone marrow (BM)-MSCs and their subsequent in vivo effects.
METHODS MSCs were isolated from rat BM and characterized morphologically, immunophenotypically and by multilineage differentiation potential. MSCs were seeded in collagen scaffold and treated with 3 μmol/L zebularine in three different ways. Cytotoxicity analysis was done and cardiac differentiation was analyzed at the gene and protein levels. Treated and untreated MSC-seeded scaffolds were transplanted in the rat myocardial infarction (MI) model and cardiac function was assessed by echocardiography. Cell tracking was performed by DiI dye labeling, while regeneration and neovascularization were evaluated by histological and immunohistochemical analysis, respectively.
RESULTS MSCs were successfully isolated and seeded in collagen scaffold. Cytotoxicity analysis revealed that zebularine was not cytotoxic in any of the treatment groups. Cardiac differentiation analysis showed more pronounced results in the type 3 treatment group which was subsequently chosen for the transplantation in the in vivo MI model. Significant improvement in cardiac function was observed in the zebularine treated MSC-seeded scaffold group as compared to the MI control. Histological analysis also showed reduction in fibrotic scar, improvement in left ventricular wall thickness and preservation of ventricular remodeling in the zebularine treated MSC-seeded scaffold group. Immunohistochemical analysis revealed significant expression of cardiac proteins in DiI labeled transplanted cells and a significant increase in the number of blood vessels in the zebularine treated MSC-seeded collagen scaffold transplanted group.
CONCLUSION Combination of 3D collagen scaffold and zebularine treatment enhances cardiac differentiation potential of MSCs, improves cell engraftment at the infarcted region, reduces infarct size and improves cardiac function.
Collapse
Affiliation(s)
- Rida-e-Maria Qazi
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Kanwal Haneef
- Dr.Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Tuba Shakil Malick
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health and Sciences, Ojha Campus, Karachi 74200, Sindh, Pakistan
| | - Waqas Ahmad
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States
| |
Collapse
|
4
|
Tobe Y, Homma J, Sakaguchi K, Sekine H, Iwasaki K, Shimizu T. Perfusable vascular tree like construction in 3D cell-dense tissues using artificial vascular bed. Microvasc Res 2022; 141:104321. [PMID: 35032535 DOI: 10.1016/j.mvr.2022.104321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Perfusable vascular structures in cell-dense tissues are essential for fabricating functional three-dimensional (3D) tissues in vitro. However, it is challenging to introduce functional vascular networks observable as vascular tree, finely spaced at intervals of tens of micrometers as in living tissues, into a 3D cell-dense tissue. Herein, we propose a method for introducing numerous vascular networks that can be perfused with blood into 3D tissues constructed by cell sheet engineering. We devise an artificial vascular bed using a hydrogel that is barely deformed by cells, enabling perfusion of the culture medium directly beneath the cell sheets. Triple-layered cell sheets with an endothelial cell network prepared by fibroblast co-culture are transplanted onto the vascular bed and subjected to perfusion culture. We demonstrate that numerous vascular networks are formed with luminal structures in the cell sheets and can be perfused with India ink or blood after a five-day perfusion culture. Histological analysis also demonstrates that perfusable vascular structures are constructed at least 100 μm intervals uniformly and densely within the tissues. The results suggest that our perfusion culture method enhances vascularization within the 3D cell-dense tissues and enables the introduction of functional vasculature macroscopically observable as vascular tree in vitro. In conclusion, this technology can be used to fabricate functional tissues and organs for regenerative therapies and in vitro experimental models.
Collapse
Affiliation(s)
- Yusuke Tobe
- Department of Modern Mechanical Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhisa Sakaguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns, Waseda University, Shinjuku-ku, Tokyo, Japan.
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | - Kiyotaka Iwasaki
- Department of Modern Mechanical Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
Rogers ZJ, Zeevi MP, Koppes R, Bencherif SA. Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives. Bioelectricity 2020; 2:279-292. [PMID: 34476358 PMCID: PMC8370338 DOI: 10.1089/bioe.2020.0025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, electroconductive hydrogels, integrating both the biomimetic attributes of hydrogels and the electrochemical properties of conductive materials, have gained significant attention. Hydrogels, three-dimensional and swollen hydrophilic polymer networks, are an important class of tissue engineering (TE) scaffolds owing to their microstructural and mechanical properties, ability to mimic the native extracellular matrix, and promote tissue repair. However, hydrogels are intrinsically insulating and therefore unable to emulate the complex electrophysiological microenvironment of cardiac and neural tissues. To overcome this challenge, electroconductive materials, including carbon-based materials, nanoparticles, and polymers, have been incorporated within nonconductive hydrogels to replicate the electrical and biological characteristics of biological tissues. This review gives a brief introduction on the rational design of electroconductive hydrogels and their current applications in TE, especially for neural and cardiac regeneration. The recent progress and development trends of electroconductive hydrogels, their challenges, and clinical translatability, as well as their future perspectives, with a focus on advanced manufacturing technologies, are also discussed.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering and Northeastern University, Boston, Massachusetts, USA
| | - Michael P. Zeevi
- Department of Chemical Engineering and Northeastern University, Boston, Massachusetts, USA
| | - Ryan Koppes
- Department of Chemical Engineering and Northeastern University, Boston, Massachusetts, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering and Northeastern University, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Compiègne, France
| |
Collapse
|