1
|
Zhou W, Nie J, Zhang D. Comprehensive Analysis of Key Endoplasmic Reticulum Stress-Related Genes and Immune Infiltrates in Stanford Type A Aortic Dissection. Anatol J Cardiol 2024; 28:236-244. [PMID: 38445624 PMCID: PMC11059230 DOI: 10.14744/anatoljcardiol.2024.4251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Type A aortic dissection is a fatal disease. However, the role of endoplasmic reticulum stress-related genes (ERSRGs) in type A aortic dissection has not yet been fully clarified. METHODS Differentially expressed genes in the aorta of type A aortic dissection patients were analyzed based on the GSE52093 database. The ERSRGs were downloaded from the GeneCards website. Functional enrichment analysis and protein-protein interaction analysis were performed on the acquired differentially expressed ERSRGs. The mRNA expression of the 5 top key differentially expressed ERSRGs was further explored in GSE153434 and clinical samples. Immune infiltration correlation analysis was performed on the validated key genes. Finally, we constructed regulatory networks of transcription factors, miRNAs, and chemicals. RESULTS Twelve differentially expressed ERSRGs were identified, of which 8 genes were downregulated and 4 genes were upregulated. GeneMANIA was adopted to analyze these genes and their interacting proteins, and the results showed that the main function was calcium ion transport. Four key genes, ACTC1, CASQ2, SPP1, and REEP1, were validated in GSE153434 and clinical samples. The area under the ROC curve values for ACTC1, CASQ2, SPP1, and REEP1 were 0.92, 0.96, 0.89, and 1.00, respectively. ACTC1 and REEP1 correlated with multiple immune cells. Many transcription factors, microRNAs, and chemicals were identified with the potential to regulate these 4 key genes. CONCLUSION In this study, we identified 12 differentially expressed ERSRGs by analyzing the Gene Expression Omnibus database. Four key genes may influence the development of type A aortic dissection by regulating endoplasmic reticulum stress. These results expand our understanding of type A aortic dissection, and the 4 key genes are expected to be diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Nie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dafa Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Stevens TL, Coles S, Sturm AC, Hoover CA, Borzok MA, Mohler PJ, El Refaey M. Molecular Pathways and Animal Models of Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1057-1090. [PMID: 38884769 DOI: 10.1007/978-3-031-44087-8_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.
Collapse
Affiliation(s)
- Tyler L Stevens
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara Coles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy C Sturm
- Genomic Medicine Institute, 23andMe, Sunnyvale, CA, USA
| | - Catherine A Hoover
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Maegen A Borzok
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mona El Refaey
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
4
|
Furlan S, Paradiso B, Greotti E, Volpe P, Nori A. Calsequestrin in Purkinje cells of mammalian cerebellum. Acta Histochem 2023; 125:152001. [PMID: 36669254 DOI: 10.1016/j.acthis.2023.152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Cerebellum is devoted to motor coordination and cognitive functions. Endoplasmic reticulum is the largest intracellular calcium store involved in all neuronal functions. Intralumenal calcium binding proteins play a pivotal role in calcium storage and contribute to both calcium release and uptake. Calsequestrin, a key calcium binding protein of sarco-endoplasmic reticulum in skeletal and cardiac muscles, was identified in chicken and fish cerebellum Purkinje cells, but its expression in mammals and human counterpart has not been studied in depth. Aim of the present paper was to investigate expression and localization of Calsequestrin in mammalian cerebellum. Calsequestrin was found to be expressed at low level in cerebellum, but specifically concentrated in Calbindin D28- and zebrin- immunopositive-Purkinje cells. Two additional fundamental calcium store markers, sarco-endoplasmic calcium pump isoform 2, SERCA2, and Inositol-trisphosphate receptor isoform 1, IP3R1, were found to be co-expressed in the region, with some localization peculiarities. In conclusion, a new marker was identified for Purkinje cells in adult mammals, including humans. Such a marker might help in staminal neuronal cells specification and in dissection of still unknown neurodegeneration and physio-pathological effects of dysregulated calcium homeostasis.
Collapse
Affiliation(s)
- Sandra Furlan
- National Research Council, Institute of Neuroscience, 35121 Padova, Italy
| | - Beatrice Paradiso
- General Pathology Unit, Dolo Hospital, Riviera XXIX Aprile, 2, 30031 Dolo, Venice, Italy
| | - Elisa Greotti
- National Research Council, Institute of Neuroscience, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Pompeo Volpe
- University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy
| | - Alessandra Nori
- University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy.
| |
Collapse
|
5
|
Leung J, Lee S, Zhou J, Jeevaratnam K, Lakhani I, Radford D, Coakley-Youngs E, Pay L, Çinier G, Altinsoy M, Behnoush AH, Mahmoudi E, Matusik PT, Bazoukis G, Garcia-Zamora S, Zeng S, Chen Z, Xia Y, Liu T, Tse G. Clinical Characteristics, Genetic Findings and Arrhythmic Outcomes of Patients with Catecholaminergic Polymorphic Ventricular Tachycardia from China: A Systematic Review. Life (Basel) 2022; 12:1104. [PMID: 35892906 PMCID: PMC9330865 DOI: 10.3390/life12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited cardiac ion channelopathy. The present study aims to examine the clinical characteristics, genetic basis, and arrhythmic outcomes of CPVT patients from China to elucidate the difference between CPVT patients in Asia and Western countries. METHODS PubMed and Embase were systematically searched for case reports or series reporting on CPVT patients from China until 19 February 2022 using the keyword: "Catecholaminergic Polymorphic Ventricular Tachycardia" or "CPVT", with the location limited to: "China" or "Hong Kong" or "Macau" in Embase, with no language or publication-type restriction. Articles that did not state a definite diagnosis of CPVT and articles with duplicate cases found in larger cohorts were excluded. All the included publications in this review were critically appraised based on the Joanna Briggs Institute Critical Appraisal Checklist. Clinical characteristics, genetic findings, and the primary outcome of spontaneous ventricular tachycardia/ventricular fibrillation (VT/VF) were analyzed. RESULTS A total of 58 unique cases from 15 studies (median presentation age: 8 (5.0-11.8) years old) were included. All patients, except one, presented at or before 19 years of age. There were 56 patients (96.6%) who were initially symptomatic. Premature ventricular complexes (PVCs) were present in 44 out of 51 patients (86.3%) and VT in 52 out of 58 patients (89.7%). Genetic tests were performed on 54 patients (93.1%) with a yield of 87%. RyR2, CASQ2, TERCL, and SCN10A mutations were found in 35 (71.4%), 12 (24.5%), 1 (0.02%) patient, and 1 patient (0.02%), respectively. There were 54 patients who were treated with beta-blockers, 8 received flecainide, 5 received amiodarone, 2 received verapamil and 2 received propafenone. Sympathectomy (n = 10), implantable cardioverter-defibrillator implantation (n = 8) and ablation (n = 1) were performed. On follow-up, 13 patients developed VT/VF. CONCLUSION This was the first systematic review of CPVT patients from China. Most patients had symptoms on initial presentation, with syncope as the presenting complaint. RyR2 mutation accounts for more than half of the CPVT cases, followed by CASQ2, TERCL and SCN10A mutations.
Collapse
Affiliation(s)
- Justin Leung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Sharen Lee
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Jiandong Zhou
- School of Data Science, City University of Hong Kong, Hong Kong, China;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Ishan Lakhani
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
| | - Danny Radford
- Kent and Medway Medical School, Canterbury CT2 7FS, UK; (D.R.); (E.C.-Y.)
| | | | - Levent Pay
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul 34147, Turkey; (L.P.); (G.Ç.)
| | - Göksel Çinier
- Department of Cardiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul 34147, Turkey; (L.P.); (G.Ç.)
| | - Meltem Altinsoy
- Department of Cardiology, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06145, Turkey;
| | - Amir Hossein Behnoush
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran 1416643931, Iran; (A.H.B.); (E.M.)
| | - Elham Mahmoudi
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran 1416643931, Iran; (A.H.B.); (E.M.)
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Kraków, Poland;
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca 6301, Cyprus;
- Medical School, University of Nicosia, Nicosia 2408, Cyprus
| | - Sebastian Garcia-Zamora
- Cardiac Intensive Care Unit, Department of Cardiology, Delta Clinic, Rosario S2000, Argentina;
| | - Shaoying Zeng
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China;
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China; (J.L.); (S.L.); (I.L.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Kent and Medway Medical School, Canterbury CT2 7FS, UK; (D.R.); (E.C.-Y.)
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China;
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China;
| |
Collapse
|
6
|
The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev 2022; 14:329-352. [PMID: 35340602 PMCID: PMC8921388 DOI: 10.1007/s12551-021-00914-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac arrhythmias are life-threatening events in which the heart develops an irregular rhythm. Mishandling of Ca2+ within the myocytes of the heart has been widely demonstrated to be an underlying mechanism of arrhythmogenesis. This includes altered function of the ryanodine receptor (RyR2)-the primary Ca2+ release channel located to the sarcoplasmic reticulum (SR). The spontaneous leak of SR Ca2+ via RyR2 is a well-established contributor in the development of arrhythmic contractions. This leak is associated with increased channel activity in response to changes in SR Ca2+ load. RyR2 activity can be regulated through several avenues, including interactions with numerous accessory proteins. One such protein is calsequestrin-2 (CSQ2), which is the primary Ca2+-buffering protein within the SR. The capacity of CSQ2 to buffer Ca2+ is tightly associated with the ability of the protein to polymerise in response to changing Ca2+ levels. CSQ2 can itself be regulated through phosphorylation and glycosylation modifications, which impact protein polymerisation and trafficking. Changes in CSQ2 modifications are implicated in cardiac pathologies, while mutations in CSQ2 have been identified in arrhythmic patients. Here, we review the role of CSQ2 in arrhythmogenesis including evidence for the indirect and direct regulation of RyR2 by CSQ2, and the consequences of a loss of functional CSQ2 in Ca2+ homeostasis and Ca2+-mediated arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00914-6.
Collapse
|
7
|
Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, Sanatani S. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci 2021; 22:ijms22179293. [PMID: 34502196 PMCID: PMC8431429 DOI: 10.3390/ijms22179293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.
Collapse
Affiliation(s)
- Dania Kallas
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Avani Lamba
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Thomas M. Roston
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Clinician-Investigator Program, University of British Columbia, 2016-1874 East Mall, Vancouver, BC V6T 1Z1, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Sonia Franciosi
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Shubhayan Sanatani
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Correspondence:
| |
Collapse
|