1
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Im MH, Kim YR, Byun JH, Jeon YJ, Choi MJ, Lim HK, Kim JM. Antibacterial activity of recombinant liver-expressed antimicrobial peptide-2 derived from olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109954. [PMID: 39389171 DOI: 10.1016/j.fsi.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a cysteine-rich peptide that plays a crucial role in the innate immune system of fish. To investigate the molecular function of LEAP-2 from olive flounder, Paralichthys olivaceus, we cloned the gene encoding LEAP-2 using PCR and expressed it in Escherichia coli. Analysis of LEAP-2 expression revealed predominant transcripts in the liver and lower levels in the intestine of olive flounder, whereas their expression levels in the liver and head kidney increased, during the initial stage of infection with the aquapathogenic bacterium Edwardsiella piscicida. Recombinant LEAP-2 (rOfLEAP-2) purified from E. coli exhibited antimicrobial activity, as demonstrated by the ultrasensitive radial diffusion assay, against both Gram-positive (Bacillus subtilis, Streptococcus parauberis, and Lactococcus garvieae) and Gram-negative (Vibrio harveyi and E. coli) bacteria, with minimum inhibitory concentrations ranging from 25 to 100 μg/mL depending on the species tested. The antibacterial activity of rOfLEAP-2 was attributed to its ability to disrupt bacterial membranes, validated by the N-phenylnaphthalen-1-amine uptake assays and scanning electron microscope analysis against E. coli, V. harveyi, B. subtilis, and L. garvieae treated with rOfLEAP-2. Furthermore, a synergistic enhancement of antibacterial activity was observed when rOfLEAP-2 was combined with ampicillin or synthetic LEAP-1 peptide, suggesting a distinct mechanism of action from those of other antimicrobial agents. These findings provide evidence for the antibacterial efficacy of LEAP-2 from olive flounder, highlighting its potential therapeutic application against pathogenic bacteria.
Collapse
Affiliation(s)
- Min-Hyuk Im
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yu-Jeong Jeon
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi-Jin Choi
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han Kyu Lim
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jong-Myoung Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Summer K, Liu L, Guo Q, Barkla B, Benkendorff K. Semi-purified Antimicrobial Proteins from Oyster Hemolymph Inhibit Pneumococcal Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:862-875. [PMID: 38430292 PMCID: PMC11480171 DOI: 10.1007/s10126-024-10297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Pneumococcal infections caused by Streptococcus pneumoniae are a leading cause of morbidity and mortality globally, particularly among children. The ability of S. pneumoniae to form enduring biofilms makes treatment inherently difficult, and options are further limited by emerging antibiotic resistance. The discovery of new antibiotics, particularly those with antibiofilm activity, is therefore increasingly important. Antimicrobial proteins and peptides (AMPs) from marine invertebrates are recognised as promising pharmacological leads. This study determined the in vitro antibacterial activity of hemolymph and unique protein fractions from an Australian oyster (Saccostrea glomerata) against multi-drug-resistant S. pneumoniae. We developed a successful method for hemolymph extraction and separation into 16 fractions by preparative HPLC. The strongest activity was observed in fraction 7: at 42 µg/mL protein, this fraction was bactericidal to S. pneumoniae and inhibited biofilm formation. Proteomic analysis showed that fraction 7 contained relatively high abundance of carbonic anhydrase, cofilin, cystatin B-like, and gelsolin-like proteins, while surrounding fractions, which showed lower or no antibacterial activity, contained these proteins in lower abundance or not at all. This work supports traditional medicinal uses of oysters and contributes to further research and development of novel hemolymph/AMP-based treatments for pneumococcal infections.
Collapse
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Bronwyn Barkla
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
4
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
6
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
7
|
Du K, Tian S, Chen H, Gao S, Dong X, Yan F. Application of enzymes in the preparation of wheat germ polypeptides and their biological activities. Front Nutr 2022; 9:943950. [PMID: 35923206 PMCID: PMC9341326 DOI: 10.3389/fnut.2022.943950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Wheat germ, a byproduct of wheat industrial processing, contains 30% protein and is a comprehensive source of plant-based protein. But a large amount of wheat germs are disposed of as waste every year. Wheat germ protein can be hydrolyzed into polypeptides with antioxidant, antihypertensive, anti-tumor, bacteriostatic and other activities. At present, researches on the hydrolysis of wheat germ protein and the preparation of bioactive peptides from wheat germ protein have attracted increasing attentions. However, the traditional protein hydrolysis method, protease hydrolysis, can no longer meet the market's needs for efficient production. Various auxiliary means, such as ultrasound, microwave and membrane separation, were applied to boost the yield and biological activity of wheat germ peptides by enzymatic hydrolysis. Under ultrasound and microwave, the protein structure may expand to increase the binding sites between enzyme and substrate and promote hydrolysis efficiency. Membrane separation is applied to separate products from enzymatic hydrolysate to reduce the inhibitory effect of the product on the hydrolysis reaction. The paper reviewed the hydrolysis methods of wheat germ protein and summarized the biological activity of wheat germ peptides to provide references for further study of wheat germ peptides.
Collapse
Affiliation(s)
- Ke Du
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- *Correspondence: Shuangqi Tian
| | - Hu Chen
- Kemen Noodle Manufacturing Co., Ltd., Changsha, China
| | - Sensen Gao
- Kemen Noodle Manufacturing Co., Ltd., Changsha, China
| | | | - Feng Yan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Virtual Prospection of Marine Cyclopeptides as Therapeutics by Means of Conceptual DFT and Computational ADMET. Pharmaceuticals (Basel) 2022; 15:509. [PMID: 35631336 PMCID: PMC9144238 DOI: 10.3390/ph15050509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Bioactive peptides are chemical compounds created through the covalent bonding of amino acids, known as amide or peptide bonds. Due to their unusual chemistry and various biological effects, marine bioactive peptides have garnered considerable research. The effectiveness of a bioactive marine peptide is attributed to its structural features, such as amino acid content and sequence, which vary depending on the degree of action. Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that render them an attractive modality for the development of therapeutics. The apratoxins are a class of molecules formed by a series of cyclic depsipeptides with potent cytotoxic activities. The objective of this research is to pursue a computational prospection of the molecular structures and properties of several cylopeptides of marine origin with potential therapeutic applications. The methodology will be based on the determination of the chemical reactivity descriptors of the studied molecules through the consideration of the Conceptual DFT model and validation of a particular model chemistry, MN12SX/Def2TZVP/H2O. These studies will be complemented by a determination of the pharmacokinetics and ADMET parameters by resorting to certain cheminformatics tools.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Juan Frau
- Departament de Química, Facultat de Ciènces, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain;
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| |
Collapse
|
9
|
Gharaei S, Ohadi M, Hassanshahian M, Porsheikhali S, Forootanfar H. Isolation, Optimization, and Structural Characterization of Glycolipid Biosurfactant Produced by Marine Isolate Shewanella algae B12 and Evaluation of Its Antimicrobial and Anti-biofilm Activity. Appl Biochem Biotechnol 2022; 194:1755-1774. [DOI: 10.1007/s12010-021-03782-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
|
10
|
Rajapaksha DC, Jayathilaka EHTT, Edirisinghe SL, Nikapitiya C, Lee J, Whang I, De Zoysa M. Octopromycin: Antibacterial and antibiofilm functions of a novel peptide derived from Octopus minor against multidrug-resistant Acinetobacter baumannii. FISH & SHELLFISH IMMUNOLOGY 2021; 117:82-94. [PMID: 34311097 DOI: 10.1016/j.fsi.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The emergence of carbapenem-resistant Acinetobacter baumannii has increased the risk of nosocomial infections, which pose a huge health threat. There is an urgent need to develop alternative therapies, including broad-spectrum antimicrobial peptides. In this study, we designed, characterized, and studied the antibacterial, antibiofilm effects and possible mode of actions of a novel synthetic peptide Octopromycin, derived from the proline-rich protein 5 of Octopus minor. Octopromycin consists of 38 amino acids, (+5) net positive charge, high hydrophobic residue ratio (36%), and two α-helix secondary structures. The minimum inhibitory concentration and minimum bactericidal concentration against A. baumannii were 50 and 200 μg/mL, respectively. Time-kill kinetics and bacterial viability assays confirmed the concentration-dependent antibacterial activity of Octopromycin. Field emission scanning electron microscopy images clearly showed ultrastructural alterations in Octopromycin-treated A. baumannii cells. Propidium iodide penetrated into Octopromycin-treated A. baumannii cells, demonstrating the loss of cell membrane integrity. Octopromycin treatment increased the production of reactive oxygen species in a concentration-dependent manner, and it inhibited the biofilm formation and showed biofilm eradication activity against A. baumannii. In vitro and in vivo safety evaluation revealed that Octopromycin was nontoxic to HEK293T and Raw 264.7 cells (<400 μg/mL), as well as mice red blood cells (<300 μg/mL), and zebrafish embryos (<4 μg/mL). An in vivo study results revealed that the A. baumannii-infected fish treated with Octopromycin exhibited a significantly higher relative percent survival (37.5%) than the infected mock-treated fish with PBS (16.6%). Furthermore, a decreased bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octopromycin in vivo. Collectively, the results indicate that the antibacterial peptide Octopromycin may achieve rapid control of A. baumannii through multi-target interactions; it presents a desirable therapeutic option for the prevention and control of the infections.
Collapse
Affiliation(s)
- D C Rajapaksha
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - S L Edirisinghe
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Joeun Lee
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101beon-gil, Janghang-eup, Seochun-gun, Chungchungnam-do, 33662, Republic of Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101beon-gil, Janghang-eup, Seochun-gun, Chungchungnam-do, 33662, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
11
|
De Mandal S, Panda AK, Murugan C, Xu X, Senthil Kumar N, Jin F. Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex. Front Microbiol 2021; 12:555022. [PMID: 34335484 PMCID: PMC8318700 DOI: 10.3389/fmicb.2021.555022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
The rapid emergence of multidrug resistant microorganisms has become one of the most critical threats to public health. A decrease in the effectiveness of available antibiotics has led to the failure of infection control, resulting in a high risk of death. Among several alternatives, antimicrobial peptides (AMPs) serve as potential alternatives to antibiotics to resolve the emergence and spread of multidrug-resistant pathogens. These small proteins exhibit potent antimicrobial activity and are also an essential component of the immune system. Although several AMPs have been reported and characterized, studies associated with their potential medical applications are limited. This review highlights the novel sources of AMPs with high antimicrobial activities, including the entomopathogenic nematode/bacterium (EPN/EPB) symbiotic complex. Additionally, the AMPs derived from insects, nematodes, and marine organisms and the design of peptidomimetic antimicrobial agents that can complement the defects of therapeutic peptides have been used as a template.
Collapse
Affiliation(s)
- Surajit De Mandal
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, India
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Antimicrobial Potential and Phytochemical Screening of Clathria sp. 1 and Tedania ( Tedania) stylonychaeta Sponge Crude Extracts Obtained from the South East Coast of South Africa. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697944. [PMID: 33728340 PMCID: PMC7936908 DOI: 10.1155/2021/6697944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/01/2022]
Abstract
Scientists have continuously searched for novel bioactive compounds to overcome the inherent problems associated with drug resistance, the evolution of unknown diseases, and the toxicity of currently used compounds. The ocean has been considered a rich source of compounds that possess unique chemical structures and novel biological capabilities. Biologically active molecules isolated from marine flora and fauna have shown significant advancement over the past century in the pharmaceutical industry. Marine natural products (MNPs) have been used as nanomedicine, cosmetics, wound healing, antimicrobial agents, anticancer agents, and anti-inflammatory agents. The physicochemical parameters of the collection site were also recorded. This study's marine sponge species were collected from Phillip's Reef, South Africa, at 12 m during the spring season. Ethyl acetate (EA) and dichloromethane : methanol (DCM : ME, 1 : 1) were used as extraction solvents. Crude extracts of the marine sponges were tested against MRSA, P. aeruginosa, C. difficile, A. fumigatus, and C. albicans. Phytochemical screening was conducted to identify seven critical phytochemical groups. A pH reading of 8.01 and a temperature of 15.45°C were recorded at the sampling site. Clathria sp. 1 and Tedania (Tedania) stylonychaeta EA crude extracts showed bioactivity against all five test pathogens. The DCM : ME crude extract of Clathria sp. 1 was the only bioactive crude extract from DCM : ME extracts. This crude extract was only bioactive against C. albicans as no activity was observed against the other four pathogens. EA crude extracts of Clathria sp. 1 yielded more significant inhibition zones against both fungal pathogens. These EA crude extracts performed better than fluconazole as inhibition zones of 35 ± 0 mm at 24 mg/ml, 31 ± 0 mm at 19 mg/ml, 31 ± 0 mm at 14.4 mg/ml, 30 ± 0 mm at 9.6 mg/ml, and 25 ± 0 mm at 7.2 mg/ml were recorded. Clathria sp. 1 crude extracts exhibited higher inhibition zones compared to Tedania (Tedania) stylonychaeta. The antibiotic imipenem (26 ± 0.7 mm at 10 μg) and ciprofloxacin (30 ± 0.3 mm at 5 μg) exhibited higher zones of inhibition than EA crude extracts of Tedania (Tedania) stylonychaeta at all test concentrations. In this study, Clathria sp. 1 was observed to have broad-spectrum bioactivity as EA crude extracts were bioactive against MRSA, P. aeruginosa, C. difficile, A. fumigatus, and C. albicans. In addition to this, the EA crude extract of Clathria sp. 1 was bacteriostatic (9.6 mg/ml). Clathria sp. 1 DCM : ME crude extract only tested positive for the presence of terpenoids. In contrast, EA crude extracts did not test positive for the existence of any of the seven phytochemicals. Our study has revealed that Tedania (Tedania) stylonychaeta and Clathria sp. 1 sponge species collected from Phillip's Reef in South Africa can produce bioactive compounds useful against bacterial and fungal species.
Collapse
|
13
|
A Pilot Safety Assessment for Recombinant Epinephelus lanceolatus Piscidin Yeast Powder as a Drug Food Additive after Subacute and Subchronic Administration to SD Rats. Mar Drugs 2020; 18:md18120586. [PMID: 33255377 PMCID: PMC7761255 DOI: 10.3390/md18120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Recombinant Epinephelus lanceolatus piscidin (RELP) was previously shown to improve growth performance and immune response when used as a feed additive for Gallus gallus domesticus. However, the long-term toxicity of RELP has not be thoroughly investigated. In the present study, we evaluated the subacute and subchronic oral toxicities of RELP in SD rats by hematological, biochemical, and histopathological analyses. To determine subacute and subchronic toxicities, male and female rats were fed with RELP 1000 mg/kg bodyweight/day for 28 and 90 days, respectively. Bodyweight and food intake were unchanged by RELP treatment over the course of the studies. After exposure, samples of blood, heart, lung, liver, and kidney were collected and analyzed. Results demonstrated that RELP exposure did not cause any observable hematological, biochemical, or histological abnormalities in SD rats. Thus, RELP may be a safe feed additive for use in agriculture and aquaculture.
Collapse
|
14
|
Riyanti, Balansa W, Liu Y, Sharma A, Mihajlovic S, Hartwig C, Leis B, Rieuwpassa FJ, Ijong FG, Wägele H, König GM, Schäberle TF. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep 2020; 10:19614. [PMID: 33184304 PMCID: PMC7665026 DOI: 10.1038/s41598-020-76256-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023] Open
Abstract
The potential of sponge-associated bacteria for the biosynthesis of natural products with antibacterial activity was evaluated. In a preliminary screening 108 of 835 axenic isolates showed antibacterial activity. Active isolates were identified by 16S rRNA gene sequencing and selection of the most promising strains was done in a championship like approach, which can be done in every lab and field station without expensive equipment. In a competition assay, strains that inhibited most of the other strains were selected. In a second round, the strongest competitors from each host sponge competed against each other. To rule out that the best competitors selected in that way represent similar strains with the same metabolic profile, BOX PCR experiments were performed, and extracts of these strains were analysed using metabolic fingerprinting. This proved that the strains are different and have various metabolic profiles, even though belonging to the same genus, i.e. Bacillus. Furthermore, it was shown that co-culture experiments triggered the production of compounds with antibiotic activity, i.e. surfactins and macrolactin A. Since many members of the genus Bacillus possess the genetic equipment for the biosynthesis of these compounds, a potential synergism was analysed, showing synergistic effects between C14-surfactin and macrolactin A against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Riyanti
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
- Faculty of Fisheries and Marine Science, Jenderal Soedirman University, 53122, Purwokerto, Indonesia
| | - Walter Balansa
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Abha Sharma
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Sanja Mihajlovic
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Benedikt Leis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Frets Jonas Rieuwpassa
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Frans Gruber Ijong
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Heike Wägele
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany.
| |
Collapse
|
15
|
Ekpenyong M, Asitok A, Antai S, Ekpo B, Antigha R, Ogarekpe N. Statistical and Artificial Neural Network Approaches to Modeling and Optimization of Fermentation Conditions for Production of a Surface/Bioactive Glyco-lipo-peptide. Int J Pept Res Ther 2020; 27:475-495. [PMID: 32837457 PMCID: PMC7375705 DOI: 10.1007/s10989-020-10094-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
A freshwater alkaliphilic strain of Pseudomonas aeruginosa, grown on waste frying oil-basal medium, produced a surface-active metabolite identified as glycolipopeptide. Bioprocess conditions namely temperature, pH, agitation and duration were comparatively modeled using statistical and artificial neural network (ANN) methods to predict and optimize product yield using the matrix of a central composite rotatable design (CCRD). Response surface methodology (RSM) was the statistical approach while a feed-forward neural network, trained with Levenberg–Marquardt back-propagation algorithm, was the neural network method. Glycolipopeptide model was predicted by a significant (P < 0.001, R2 of 0.9923) quadratic function of the RSM with a mean squared error (MSE) of 3.6661. The neural network model, on the other hand, returned an R2 value of 0.9964 with an MSE of 1.7844. From all error metrics considered, ANN glycolipopeptide model significantly (P < 0.01) outperformed RSM counterpart in predictive modeling capability. Optimization of factor levels for maximum glycolipopeptide concentration produced bioprocess conditions of 32 °C for temperature, 7.6 for pH, agitation speed of 130 rpm and a fermentation time of 66 h, at a combined desirability function of 0.872. The glycosylated lipid-tailed peptide demonstrated significant anti-bacterial activity (MIC = 8.125 µg/mL) against Proteus vulgaris, dose-dependent anti-biofilm activities against Escherichia coli (83%) and Candida dubliniensis (90%) in 24 h and an equally dose-dependent cytotoxic activity against human breast (MCF-7: IC50 = 65.12 µg/mL) and cervical (HeLa: IC50 = 16.44 µg/mL) cancer cell lines. The glycolipopeptide compound is recommended for further studies and trials for application in human cancer therapy.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Atim Asitok
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Sylvester Antai
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Bassey Ekpo
- Department of Chemistry, University of Calabar, Calabar, Cross River State Nigeria.,Nigerian National Petroleum Corporation (NNPC), Port Harcourt, Nigeria
| | - Richard Antigha
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Nkpa Ogarekpe
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| |
Collapse
|
16
|
Effects of Compound Active Peptides on Protecting Liver and Intestinal Epithelial Cells from Damages and Preventing Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3183104. [PMID: 32318237 PMCID: PMC7157784 DOI: 10.1155/2020/3183104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/04/2023]
Abstract
Active peptides have good effectiveness in controlling or preventing many diseases. Compound active peptides (CAP) obtained from animal, plant, and sea food proteins were used in this study to explore their effects on antioxidation, anti-inflammation, and antihyperglycemia in vitro and in vivo. The results demonstrated that 10 μg/mL CAP could increase cell viability (P < 0.05) and decrease reactive oxygen species (ROS) levels and cell apoptosis (P < 0.05) when WRL68 cells were induced by H2O2 for 6 h. Moreover, incubation with 20 μg/mL CAP for 6 h significantly increased cell viability and Bcl-2 expression level (P < 0.05) and decreased expression levels of IL-6, IL-8, TNF-α, Bax, and Caspase 3 and the ratio of Bax/Bcl-2 (P < 0.05) when swine jejunal epithelial cells (IPEC-J2) were induced by deoxynivalenol (DON). In addition, adding CAP individually or combined with Liuweidihuang pills (LDP, Chinese medicine) and low-dose glibenclamide could lower blood glucose levels in alloxan-induced hyperglycemic model mice. These results suggested that CAP was probably a beneficial ingredient for alleviating H2O2-induced oxidative stress and DON-induced cell inflammation and apoptosis and preventing hyperglycemia.
Collapse
|