1
|
Tóth D, Fábián E, Szabó E, Patkó E, Vicena V, Váczy A, Atlasz T, Tornóczky T, Reglődi D. Investigation of PACAP38 and PAC1 Receptor Expression in Human Retinoblastoma and the Effect of PACAP38 Administration on Human Y-79 Retinoblastoma Cells. Life (Basel) 2024; 14:185. [PMID: 38398694 PMCID: PMC10890153 DOI: 10.3390/life14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Retinoblastoma represents the most prevalent malignant neoplasm affecting the eyes in childhood. The clear-cut origin of retinoblastoma has not yet been determined; however, based on experiments, it has been suggested that RB1 loss in cone photoreceptors causes retinoblastoma. Pituitary adenylate-cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide which has been shown to be affected in certain tumorous transformations, such as breast, lung, kidney, pancreatic, colon, and endocrine cancers. This study aimed to investigate potential changes in both PACAP38 and PAC1 receptor (PAC1R) expression in human retinoblastoma and the effect of PACAP38 administration on the survival of a human retinoblastoma cell line (Y-79). We analyzed human enucleation specimens removed because of retinoblastoma for PACAP38 and PAC1R immunostaining and the effect of PACAP38 on the survival of the Y-79 cell line. We described for the first time that human retinoblastoma cells from patients showed only perinuclear, dot-like immunopositivity for both PACAP38 and PAC1R, irrespective of laterality, genetic background, or histopathological features. Nanomolar (100 nM and 500 nM) PACAP38 concentrations had no effect on the viability of Y-79 cells, while micromolar (2 µM and 6 µM) PACAP38 significantly decreased tumor cell viability. These findings, along with general observations from animal studies showing that PACAP38 has strong anti-apoptotic, anti-inflammatory, and antioxidant effects on ocular tissues, together suggest that PACAP38 and its analogs are promising candidates in retinoblastoma therapy.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary
| | - Eszter Fábián
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Edina Szabó
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Evelin Patkó
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Viktória Vicena
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Alexandra Váczy
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Tamás Atlasz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
- Department of Sportbiology, University of Pécs, Ifjúság út 6, 7624 Pecs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinical Center, 7624 Pecs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| |
Collapse
|
2
|
Tóth T, Alizadeh H, Polgár B, Csalódi R, Reglődi D, Tamás A. Diagnostic and Prognostic Value of PACAP in Multiple Myeloma. Int J Mol Sci 2023; 24:10801. [PMID: 37445974 DOI: 10.3390/ijms241310801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Collapse
Affiliation(s)
- Tünde Tóth
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Hematology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Renáta Csalódi
- Department of Hematology, Balassa János Hospital of Tolna County, 7100 Szekszárd, Hungary
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Hajdú T, Kovács P, Zsigrai E, Takács R, Vágó J, Cho S, Sasi-Szabó L, Becsky D, Keller-Pinter A, Emri G, Rácz K, Reglodi D, Zákány R, Juhász T. Pituitary Adenylate Cyclase Activating Polypeptide Has Inhibitory Effects on Melanoma Cell Proliferation and Migration In Vitro. Front Oncol 2021; 11:681603. [PMID: 34616669 PMCID: PMC8488289 DOI: 10.3389/fonc.2021.681603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.
Collapse
Affiliation(s)
- Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Zsigrai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sinyoung Cho
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - László Sasi-Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kálmán Rácz
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, Szentagothai Research Center, Medical School, University of Pécs, Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|