1
|
de Jager S, Vermeulen A, De Baere S, Van der Stede T, Lievens E, Croubels S, Jäger R, Purpura M, Bourgois JG, Derave W. Acute balenine supplementation in humans as a natural carnosinase-resistant alternative to carnosine. Sci Rep 2023; 13:6484. [PMID: 37081019 PMCID: PMC10119279 DOI: 10.1038/s41598-023-33300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Balenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers. Half-life of balenine (34.9 ± 14.6 min) was respectively 29.1 and 16.3 times longer than that of carnosine (1.20 ± 0.36 min, p = 0.0044) and anserine (2.14 ± 0.58 min, p = 0.0044). In vivo, 10 mg/kg of balenine elicited a peak plasma concentration (Cmax) of 28 µM, which was 4 and 18 times higher than with 4 (p = 0.0034) and 1 mg/kg (p = 0.0017), respectively. CN1 activity showed strong negative correlations with half-life (ρ = - 0.829; p = 0.0583), Cmax (r = - 0.938; p = 0.0372) and incremental area under the curve (r = - 0.825; p = 0.0433). Overall, balenine seems more resistant to CN1 hydrolysis resulting in better in vivo bioavailability, yet its degradation remains dependent on enzyme activity. Although a similar functionality as carnosine and anserine remains to be demonstrated, opportunities arise for balenine as nutraceutical or ergogenic aid.
Collapse
Affiliation(s)
- Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ralf Jäger
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Martin Purpura
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Balenine, Imidazole Dipeptide Promotes Skeletal Muscle Regeneration by Regulating Phagocytosis Properties of Immune Cells. Mar Drugs 2022; 20:md20050313. [PMID: 35621964 PMCID: PMC9146453 DOI: 10.3390/md20050313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Balenine is one of the endogenous imidazole dipeptides derived from marine products. It is composed of beta-alanine and 3-methyl-L-histidine, which exist mainly in the muscles of marine organisms. The physiological functions of dietary balenine are not well-known. In this study, we investigated whether the supplementation of dietary balenine was associated with muscle function in a cardiotoxin-indued muscle degeneration/regeneration model. Through morphological observation, we found that the supplementation of balenine-enriched extract promoted the regeneration stage. In addition, the expression of regeneration-related myogenic marker genes, such as paired box protein 7, MyoD1, myogenin, and Myh3, in a group of mice fed a balenine-enriched extract diet was higher than that in a group fed a normal diet. Moreover, the supplementation of balenine-enriched extract promoted the expression of anti-inflammatory cytokines as well as pro-inflammatory cytokines at the degeneration stage. Interestingly, phagocytic activity in the balenine group was significantly higher than that in the control group in vitro. These results suggest that balenine may promote the progress of muscle regeneration by increasing the phagocytic activity of macrophages.
Collapse
|
3
|
Detection of Balenine in Mouse Plasma after Administration of Opah-Derived Balenine by HPLC with PITC Pre-Column Derivatization. Foods 2022; 11:foods11040590. [PMID: 35206066 PMCID: PMC8871149 DOI: 10.3390/foods11040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
We examined the absorption of balenine (Bal) in mouse blood after the administration of a high-purity Bal prepared from opah muscle. Using HPLC with phenyl isothiocyanate pre-column derivatization, we successfully isolated imidazole peptides and their constituents. We detected Bal and 3-methylhistidine (3-Me-His) in mouse blood 1 h after the administration of opah-derived Bal. The concentrations of Bal and 3-Me-His significantly increased to 128.27 and 69.09 nmol/mL in plasma, respectively, but were undetectable in control and carnosine (Car)-administrated mice. In contrast, β-alanine and histidine did not increase in mouse plasma 1 h after the administration of Car and opah-derived Bal. The present study is the first report on the absorption of food-derived Bal in mouse blood and serves as a pilot study for future clinical trials.
Collapse
|