1
|
Vinutha AS, Rajasekaran R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 2023:10.1007/s10822-023-00516-2. [PMID: 37368161 DOI: 10.1007/s10822-023-00516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- A S Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae. Cells 2022; 11:cells11192995. [PMID: 36230959 PMCID: PMC9564205 DOI: 10.3390/cells11192995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
Collapse
|
3
|
Sharma P, Sharma S, Joshi S, Barman P, Bhatt A, Maan M, Singla N, Rishi P, Ali ME, Preet S, Saini A. Design, characterization and structure-function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment. Sci Rep 2022; 12:12058. [PMID: 35835842 PMCID: PMC9283491 DOI: 10.1038/s41598-022-16303-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of multidrug resistance coupled with shrinking antibiotic pipelines has increased the demand of antimicrobials with novel mechanisms of action. Therefore, researchers across the globe are striving to develop new antimicrobial substances to alleviate the pressure on conventional antibiotic therapies. Host-Defence Peptides (HDPs) and their derivatives are emerging as effective therapeutic agents against microbial resistance. In this study, five analogs (DP1-5) of the N-terminal (N-15) fragment of CATH-2 were designed based on the delicate balance between various physicochemical properties such as charge, aliphatic character, amphipathicity and hydrophobicity. By means of in-silico and in-vitro studies a novel peptide (DP1) with the sequence "RFGRFLRKILRFLKK" was found to be more effective and less toxic than the N-terminal CATH-2 peptide. Circular dichroism spectroscopy and differential scanning calorimetry were applied for structural insights. Antimicrobial, haemolytic, and cytotoxic activities were also assessed. The resulting peptide was characterized by low cytotoxicity, low haemolytic activity, and efficient anti-microbial activity. Structurally, it displayed strong helical properties irrespective of the solvent environment and was stable in membrane-mimicking environments. Taken together, the data suggests that DP1 can be explored as a promising therapeutic agent with possible clinical applications.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Chandigarh, UT, 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Aashish Bhatt
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, UT, 160014, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
4
|
Sekar PC, Srinivasan E, Chandrasekhar G, Paul DM, Sanjay G, Surya S, Kumar NSAR, Rajasekaran R. Probing the competitive inhibitor efficacy of frog-skin alpha helical AMPs identified against ACE2 binding to SARS-CoV-2 S1 spike protein as therapeutic scaffold to prevent COVID-19. J Mol Model 2022; 28:128. [PMID: 35461388 PMCID: PMC9034900 DOI: 10.1007/s00894-022-05117-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
In COVID-19 infection, the SARS-CoV-2 spike protein S1 interacts to the ACE2 receptor of human host, instigating the viral infection. To examine the competitive inhibitor efficacy of broad spectrum alpha helical AMPs extracted from frog skin, a comparative study of intermolecular interactions between viral S1 and AMPs was performed relative to S1-ACE2p interactions. The ACE2 binding region with S1 was extracted as ACE2p from the complex for ease of computation. Surprisingly, the Spike-Dermaseptin-S9 complex had more intermolecular interactions than the other peptide complexes and importantly, the S1-ACE2p complex. We observed how atomic displacements in docked complexes impacted structural integrity of a receptor-binding domain in S1 through conformational sampling analysis. Notably, this geometry-based sampling approach confers the robust interactions that endure in S1-Dermaseptin-S9 complex, demonstrating its conformational transition. Additionally, QM calculations revealed that the global hardness to resist chemical perturbations was found more in Dermaseptin-S9 compared to ACE2p. Moreover, the conventional MD through PCA and the torsional angle analyses indicated that Dermaseptin-S9 altered the conformations of S1 considerably. Our analysis further revealed the high structural stability of S1-Dermaseptin-S9 complex and particularly, the trajectory analysis of the secondary structural elements established the alpha helical conformations to be retained in S1-Dermaseptin-S9 complex, as substantiated by SMD results. In conclusion, the functional dynamics proved to be significant for viral Spike S1 and Dermaseptin-S9 peptide when compared to ACE2p complex. Hence, Dermaseptin-S9 peptide inhibitor could be a strong candidate for therapeutic scaffold to prevent infection of SARS-CoV-2.
Collapse
Affiliation(s)
- P Chandra Sekar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to Be University), Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - D Meshach Paul
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - G Sanjay
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - S Surya
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - N S Arun Raj Kumar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India.
| |
Collapse
|