1
|
Abid A, Khalid A, Suleman M, Akbar H, Hafeez MA, Khan JA, Rashid MI. Humoral and cellular immunity in response to an in silico-designed multi-epitope recombinant protein of Theileria annulata. Front Immunol 2024; 15:1400308. [PMID: 39234242 PMCID: PMC11371685 DOI: 10.3389/fimmu.2024.1400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Tropical theileriosis is a lymphoproliferative disease caused by Theileria annulata and is transmitted by Ixodid ticks of the genus Hyalomma. It causes significant losses in livestock, especially in exotic cattle. The existing methods for controlling it, chemotherapeutic agents and a vaccine based on an attenuated schizont stage parasite, have several limitations. A promising solution to control this disease is the use of molecular vaccines based on potential immunogenic proteins of T. annulata. For this purpose, we selected five antigenic sequences of T. annulata, i.e. SPAG-1, Tams, TaSP, spm2, and Ta9. These were subjected to epitope prediction for cytotoxic T lymphocytes, B-cells, and helper T lymphocytes. CTL and B-cell epitopes with a higher score whereas those of HTL with a lower score, were selected for the construct. A single protein was constructed using specific linkers and evaluated for high antigenicity and low allergenicity. The construct was acidic, hydrophobic, and thermostable in nature. Secondary and tertiary structures of this construct were drawn using the PSIPRED and RaptorX servers, respectively. A Ramachandran plot showed a high percentage of residues in this construct in favorable, allowed, and general regions. Molecular docking studies suggested that the complex was stable and our construct could potentially be a good candidate for immunization trials. Furthermore, we successfully cloned it into the pET-28a plasmid and transformed it into the BL21 strain. A restriction analysis was performed to confirm the transformation of our plasmid. After expression and purification, recombinant protein of 49 kDa was confirmed by western blotting. An ELISA detected increased specific antibody levels in the sera of the immunized animals compared with the control group, and flow cytometric analysis showed a stronger cell-mediated immune response. We believe our multi-epitope recombinant protein has the potential for the large-scale application for disease prevention globally in the bovine population. This study will act as a model for similar parasitic challenges.
Collapse
Affiliation(s)
- Asadullah Abid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ambreen Khalid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Suleman
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mian Abdul Hafeez
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jawaria Ali Khan
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Mia MM, Hasan M, Ahmed S, Rahman MN. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. INFECTION, GENETICS AND EVOLUTION 2022; 104:105355. [PMID: 36007760 PMCID: PMC9394107 DOI: 10.1016/j.meegid.2022.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
3
|
Papathoti NK, Mendam K, Sriram Kanduri BH, Thepbandit W, Sangpueak R, Saengchan C, Hoang NH, Megavath VS, Kurakula M, Le Thanh T, Buensanteai N. Investigation of bioactive compounds from Bacillus sp. against protein homologs CDC42 of Colletotrichum gloeosporioides causing anthracnose disease in cassava by using molecular docking and dynamics studies. Front Mol Biosci 2022; 9:1010603. [PMID: 36213126 PMCID: PMC9537347 DOI: 10.3389/fmolb.2022.1010603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Manihot esculenta, commonly called cassava, is an economically valuable crop and important staple food, grown in tropical and subtropical regions of the world. Demand for cassava in the food and fuel industry is growing worldwide. However, anthracnose disease caused by Colletotrichum gloeosporioides severely affects cassava yield and production. The bioactive molecules from Bacillus are widely used to control fungal diseases in several plants. Therefore, in this study, bioactive compounds (erucamide, behenic acid, palmitic acid, phenylacetic acid, and β-sitosterol) from Bacillus megaterium were assessed against CDC42, a key protein for virulence, from C. gloeosporioides. Structure of the CDC42 protein was generated through the comparative homology modeling method. The binding site of the ligands and the stability of the complex were analyzed through docking and molecular dynamics simulation studies, respectively. Furthermore, a protein interaction network was envisaged through the STRING database, followed by enrichment analysis in the WebGestalt tool. From the enrichment analysis, it is apparent that bioactive from B. megaterium chiefly targets the MAP kinase pathway that is essential for filamentous growth and virulence. Further exploration through experimental studies could be advantageous for cassava improvement as well as to combat against C. gloeosporioides pathogen.
Collapse
Affiliation(s)
- Narendra Kumar Papathoti
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kishore Mendam
- Department of Zoology, Dr. B.R. Ambedkar Open University, Hyderabad, Telangana, India
| | | | - Wannaporn Thepbandit
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rungthip Sangpueak
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chanon Saengchan
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nguyen Huy Hoang
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Vineela Sai Megavath
- Department of Biotechnology, Mahatma Gandhi University, Nalgonda, Telangana, India
| | - Madhuri Kurakula
- Department of Biotechnology, Mahatma Gandhi University, Nalgonda, Telangana, India
| | - Toan Le Thanh
- Department of Plant Protection, Can Tho University, Can Tho City, Viet Nam
| | - Natthiya Buensanteai
- School of Crop Production Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- *Correspondence: Natthiya Buensanteai,
| |
Collapse
|