1
|
Fluorene Based Ferric Complex as Colorimetric and Fluorometric Probe for Highly Selective Detection of CN - and S 2- Anions. J Fluoresc 2021; 31:1311-1321. [PMID: 34110595 DOI: 10.1007/s10895-021-02737-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
A series of new chemosensor molecules bearing benzothiazole-, quinoline- and phthalazine-functionalized fluorene derivatives were synthesized and their complexation behaviors with Fe3+ and Sn2+ ions were investigated. The sensing abilities of their complexes towards both cyanide and sulfide anions were investigated by colorimetric and fluorometric techniques in detail. The sensing mechanism was investigated by Job's and Scatchard plots evaluations, and also absorption/fluorescence titration experiments. Among the studied dye/metal binary systems, F-BT sensor to Fe3+ giving the detection limits of 3.1 µg has also displayed high selectivity and sensitivity towards CN- and S2- anions, lead to a significant color change of the solution observable by the naked eye.
Collapse
|
2
|
Wunderlich G, Wendisch M, Aurich D, Runge R, Freudenberg R, Kotzerke J. Preincubation with Sn-complexes causes intensive intracellular retention of 99mTc in thyroid cells in vitro. Nuklearmedizin 2018; 51:179-85. [DOI: 10.3413/nukmed-0450-11-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 11/20/2022]
Abstract
SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.
Collapse
Affiliation(s)
- G Wunderlich
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität, 01307 Dresden, Fetscherstr. 74, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Mahanty S, Raghav D, Rathinasamy K. In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide. CHEMOSPHERE 2017; 183:339-352. [PMID: 28554018 DOI: 10.1016/j.chemosphere.2017.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Triphenyltin hydroxide (TPTH) is a widely used pesticide that is highly toxic to a variety of organisms including humans and a potential contender for the environmental pollutant. In the present study, the cytotoxic mechanism of TPTH on mammalian cells was analyzed using HeLa cells and the antibacterial activity was analyzed using B. subtilis and E. coli cells. TPTH inhibited the growth of HeLa cells with a half-maximal inhibitory concentration of 0.25 μM and induced mitotic arrest. Immunofluorescence microscopy analysis showed that TPTH caused strong depolymerization of interphase microtubules and spindle abnormality with the appearance of colchicine type mitosis and condensed chromosome. TPTH exhibited high affinity for tubulin with a dissociation constant of 2.3 μM and inhibited the in vitro microtubule assembly in the presence of glutamate as well as microtubule-associated proteins. Results from the molecular docking and in vitro experiments implied that TPTH may have an overlapping binding site with colchicine on tubulin with a distance of about 11 Å between them. TPTH also binds to DNA at the A-T rich region of the minor groove. The data presented in the study revealed that the toxicity of TPTH in mammalian cells is mediated through its interactions with DNA and its strong depolymerizing activity on tubulin. However, its antibacterial activity was not through FtsZ, the prokaryotic homolog of tubulin but perhaps through its interactions with DNA.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
4
|
Rajan I, Narayanan N, Rabindran R, Jayasree PR, Manish Kumar PR. Zingerone protects against stannous chloride-induced and hydrogen peroxide-induced oxidative DNA damage in vitro. Biol Trace Elem Res 2013; 155:455-9. [PMID: 24006104 DOI: 10.1007/s12011-013-9801-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
In this paper, we report the dose-dependent antioxidant activity and DNA protective effects of zingerone. At 500 μg/mL, the DPPH radical scavenging activity of zingerone and ascorbic acid as a standard was found to be 86.7 and 94.2 % respectively. At the same concentration, zingerone also showed significant reducing power (absorbance 0.471) compared to that of ascorbic acid (absorbance 0.394). The in vitro toxicity of stannous chloride (SnCl2) was evaluated using genomic and plasmid DNA. SnCl2-induced degradation of genomic DNA was found to occur at a concentration of 0.8 mM onwards with complete degradation at 1.02 mM and above. In the case of plasmid DNA, conversion of supercoiled DNA into the open circular form indicative of DNA nicking activity was observed at a concentration of 0.2 mM onwards; complete conversion was observed at a concentration of 1.02 mM and above. Zingerone was found to confer protection against SnCl2-induced oxidative damage to genomic and plasmid DNA at concentrations of 500 and 750 μg/mL onwards, respectively. This protective effect was further confirmed in the presence of UV/H2O2-a known reactive oxygen species (ROS) generating system-wherein protection by zingerone against ROS-mediated DNA damage was observed at a concentration of 250 μg/mL onwards in a dose-dependent manner. This study clearly indicated the in vitro DNA protective property of zingerone against SnCl2-induced, ROS-mediated DNA damage.
Collapse
Affiliation(s)
- Iyappan Rajan
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | | | | | | | | |
Collapse
|
5
|
Damati A, Vlastos D, Philippopoulos AI, Matthopoulos DP. Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation. Drug Chem Toxicol 2013; 37:213-20. [DOI: 10.3109/01480545.2013.838773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Mattos JCPD, Matos VCD, Rodrigues MP, Oliveira MBND, Dantas FJS, Santos-Filho SD, Bernardo-Filho M, Caldeira-de-Araujo A. Evaluation of deoxyribonucleic acid toxicity induced by the radiopharmaceutical 99mTechnetium-Methylenediphosphonic acid and by stannous chloride in Wistar rats. Molecules 2012; 17:12974-83. [PMID: 23117436 PMCID: PMC6268462 DOI: 10.3390/molecules171112974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/10/2012] [Accepted: 10/25/2012] [Indexed: 11/17/2022] Open
Abstract
Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc) is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT) due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl2) being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT) and SnCl2 were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control), cyclophosphamide 50 mg/kg b.w. (positive control), SnCl2 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay) and 36 h after, for micronucleus test. The data showed that both SnCl2 and 99mTc-MDP-induced deoxyribonucleic acid (DNA) strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl2 in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine.
Collapse
Affiliation(s)
- José Carlos Pelielo De Mattos
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Endonuclease IV is the main base excision repair enzyme involved in DNA damage induced by UVA radiation and stannous chloride. J Biomed Biotechnol 2010; 2010:376218. [PMID: 20300433 PMCID: PMC2840410 DOI: 10.1155/2010/376218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/16/2009] [Accepted: 12/23/2009] [Indexed: 11/18/2022] Open
Abstract
Stannous chloride (SnCl2) and UVA induce DNA lesions through ROS. The aim of this work was to study the toxicity induced by UVA preillumination, followed by SnCl2 treatment. E. coli BER mutants were used to identify genes which could play a role in DNA lesion repair generated by these agents. The survival assays showed (i) The nfo mutant was the most sensitive to SnCl2; (ii) lethal synergistic effect was observed after UVA pre-illumination, plus SnCl2 incubation, the nfo mutant being the most sensitive; (iii) wild type and nfo mutants, transformed with pBW21 plasmid (nfo+) had their survival increased following treatments. The alkaline agarose gel electrophoresis assays pointed that (i) UVA induced DNA breaks and fpg mutant was the most sensitive; (ii) SnCl2-induced DNA strand breaks were higher than those from UVA and nfo mutant had the slowest repair kinetics; (iii) UVA + SnCl2 promoted an increase in DNA breaks than SnCl2 and, again, nfo mutant displayed the slowest repair kinetics. In summary, Nfo protects E. coli cells against damage induced by SnCl2 and UVA + SnCl2.
Collapse
|
8
|
SnCl2-induced DNA damage and repair inhibition of MMS-caused lesions in V79 Chinese hamster fibroblasts. Arch Toxicol 2009; 83:769-75. [DOI: 10.1007/s00204-009-0409-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
|
9
|
El-Makawy AI, Girgis SM, Khalil WK. Developmental and genetic toxicity of stannous chloride in mouse dams and fetuses. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:105-10. [DOI: 10.1016/j.mrgentox.2008.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/09/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
10
|
Nunes A, Ferreira-Machado S, Nunes R, Dantas F, De Mattos J, de Araujo AC. Response. Food Chem Toxicol 2007. [DOI: 10.1016/j.fct.2007.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Guedes AP, Cardoso VN, De Mattos JCP, Dantas FJS, Matos VC, Silva JCF, Bezerra RJAC, Caldeira-de-Araujo A. Cytotoxic and genotoxic effects induced by stannous chloride associated to nuclear medicine kits. Nucl Med Biol 2006; 33:915-21. [PMID: 17045172 DOI: 10.1016/j.nucmedbio.2006.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 11/23/2022]
Abstract
At present, more than 75% of routine nuclear medicine diagnostic procedures use technetium-99m (99mTc). The binding between 99mTc and the drug to obtain the radiopharmaceutical needs a reducing agent, with stannous chloride (SnCl2) being one of the most used. There are controversies about the cytotoxic, genotoxic and mutagenic effects of SnCl2 in the literature. Thus, the approaches below were used to better understand the biological effects of this salt and its association in nuclear medicine kits [methylenediphosphonate (MDP) bone scintigraphy and diethylenetriaminepentaacetic acid (DTPA) kidney and brain scintigraphy]: (i) bacterial inactivation experiments; (ii) agarose gel electrophoresis of supercoiled and linear plasmid DNA and (iii) bacterial transformation assay. The Escherichia coli strains used here were AB1157 (wild type) and BW9091 (xthA mutant). Data obtained showed that both MDP and SnCl2 presented a high toxicity, but this was not observed when they were assayed together in the kit, thereby displaying a mutual protect effect. DTPA salt showed a moderate toxicity, and once more, the DTPA kit provided protection, compared to the SnCl2 effect alone. The results suggest a possible complex formation, either MDP-SnCl2 or DTPA-SnCl2, originating an atoxic compound. On the other hand, SnCl2-induced cell inactivation and the decrease in bacterial transformation generated by DTPA found in XthA mutant strain suggest that the lack of this enzyme could be responsible for the effects observed, being necessary to induce DNA damage repair.
Collapse
Affiliation(s)
- Anderson P Guedes
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro 20551-030, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nunes APM, De Mattos JCP, Ferreira-Machado SC, Nunes RM, Asad NR, Dantas FJS, Bezerra RJAC, Caldeira-de-Araujo A. Biological effects of stevioside on the survival of Escherichia colistrains and plasmid DNA. Mol Cell Biochem 2006; 293:187-92. [PMID: 16804638 DOI: 10.1007/s11010-006-9241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Stevioside is widely used daily in many countries as a non-caloric sugar substitute. Its sweetening power is higher than that of sucrose by approximately 250-300 times, being extensively employed as a household sweetener, or added to beverages and food products. The purpose of this study was to ascertain stevioside genotoxic and cytotoxic potentiality in different biological systems, as its use continues to increase. Agarose gel electrophoresis and bacterial transformation were employed to observe the occurrence of DNA lesions. In addition to these assays, Escherichia coli strains were incubated with stevioside so that their survival fractions could be obtained. Results show absence of genotoxic activity through electrophoresis and bacterial transformation assays and drop of survival fraction of E. coli strains deficient in rec A and nth genes, suggesting that stevioside (i) is cytotoxic; (ii) could need metabolization to present deleterious effects on cells; (iii) is capable of generating lesions in DNA and pathways as base excision repair, recombination and SOS system would be important to recover these lesions.
Collapse
Affiliation(s)
- A P M Nunes
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Avenida 28 de Setembro #87, Rio de Janeiro, RJ 20551-030, Brazil
| | | | | | | | | | | | | | | |
Collapse
|