Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells.
BMC Immunol 2011;
12:54. [PMID:
21955384 PMCID:
PMC3208582 DOI:
10.1186/1471-2172-12-54]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND
Severe autoinflammatory diseases are associated with mutations in the Foxp3 locus in both mice and humans. Foxp3 is required for the development, function, and maintenance of regulatory T cells (Tregs), a subset of CD4 cells that suppress T cell activation and inflammatory processes. Siva is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on Treg cells: CD27, GITR, and OX40.
RESULTS
Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that Siva repressed IL-2 induction by suppressing IL-2 promoter activity during T cell activation. Siva-1's repressive effect on IL-2 gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity.
CONCLUSIONS
In summary, our data suggest that both FOXP3 and Siva function as negative regulators of IL-2 gene expression in Treg cells, via suppression of NFAT by FOXP3 and of NFkappaB by both FOXP3 and Siva. Our work contributes evidence for Siva's role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper Treg cell function.
Collapse