1
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
2
|
Ding B, Niu W, Wang S, Zhang F, Wang H, Chen X, Chen S, Ma S, Kang W, Wang M, Li L, Xiao W, Guo Z, Wang Y. Centella asiatica (L.) Urb. attenuates cardiac hypertrophy and improves heart function through multi-level mechanisms revealed by systems pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115106. [PMID: 35181485 DOI: 10.1016/j.jep.2022.115106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac hypertrophy (CH) is an incurable heart disease, contributing to an increased risk of heart failure due to the lack of safe and effective strategies. Therefore, searching for new approaches to treat CH is urgent. Centella asiatica (L.) Urb. (CA), a traditional food and medicinal natural plant, has been turned out to be effective in the treatment of cardiovascular disease, but its efficacy and potential mechanisms in alleviating CH have not yet been investigated. AIM OF STUDY In this study, we aimed to elucidate the multi-level mechanisms underlying the effect of CA against CH. STUDY DESIGN AND METHODS A systems pharmacology approach was employed to screen active ingredients, identify potential targets, construct visual networks and systematically investigate the pathways and mechanisms of CA for CH treatment. The cardiac therapeutic potential and mechanism of action of CA on CH were verified with in vivo and in vitro experiments. RESULTS Firstly, we demonstrated the therapeutic effect of CA on CH and then screened 13 active compounds of CA according to the pharmacokinetic properties. Then, asiatic acid (AA) was identified as the major active molecule of CA for CH treatment. Afterwards, network and functional enrichment analyses showed that CA exerted cardioprotective effects by modulating multiple pathways mainly involved in anti-apoptotic, antioxidant and anti-inflammatory processes. Finally, in vivo, the therapeutic effects of AA and its action on the YAP/PI3K/AKT axis and NF-κB signaling pathway were validated using an isoproterenol-induced CH mouse model. In vitro, AA decreased ROS levels in hydrogen peroxide-treated HL-1 cells. CONCLUSION Overall, the multi-level mechanisms of CA for CH treatment were demonstrated by systems pharmacology approach, which provides a paradigm for systematically deciphering the mechanisms of action of natural plants in the treatment of diseases and offers a new idea for the development of medicinal and food products.
Collapse
Affiliation(s)
- Bojiao Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; College of Pharmacy, Heze University, Heze, Shandong, 274015, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Weiqing Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Siyi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Fan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Haiqing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Sen Chen
- School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuangxin Ma
- School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenhui Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Mingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Liang Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| | - Zihu Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China; College of Pharmacy, Heze University, Heze, Shandong, 274015, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, Jiangsu, 222002, China.
| |
Collapse
|
3
|
Nauclea orientalis (L.) Bark Extract Protects Rat Cardiomyocytes from Doxorubicin-Induced Oxidative Stress, Inflammation, Apoptosis, and DNA Fragmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1714841. [PMID: 35198093 PMCID: PMC8860544 DOI: 10.1155/2022/1714841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of anthracycline antibiotic, doxorubicin (Dox), is hampered due to the dose-dependent cardiotoxicity. The objective of the study was to explore the counteraction of aqueous bark extract of Nauclea orientalis in Dox-induced cardiotoxicity in Wistar rats. The acute and subchronic toxicity study performed with 2.0 g/kg of the plant extract revealed biochemical and haematological parameters to be within the physiological range, and no histological alterations were observed in any organs isolated. Screening of plant extract for the protection of the myocardium from Dox-induced oxidative stress, inflammation, and apoptosis was performed on five groups of rats: control, plant extract control, Dox control (distilled water (D.H2O) 2 weeks + on the 11th day single injection of Dox, 18 mg/kg), plant + Dox (2.0 g/kg plant extract 2 weeks + on the 11th day Dox, 18 mg/kg), and positive control, dexrazoxane. A significant increase in cardiac biomarkers and lipid peroxidation (p < 0.001) and a significant decrease in antioxidant parameters (p < 0.001) were observed in the Dox control group. All these parameters were reversed significantly (p < 0.05) in the plant-pretreated group. The histopathological assessment of myocardial damage provided supportive evidence for the biochemical results obtained. Inflammatory markers, myeloperoxidase, expression of TNFα and caspase-3, and DNA fragmentation (TUNEL positive nuclei) were significantly elevated (p < 0.05), and expression of Bcl-2 was significantly decreased (p < 0.05) in the Dox control; however, all these parameters were significantly reversed in the plant extract-treated group. In conclusion, the aqueous bark extract of Nauclea orientalis (2.0 g/kg) has the ability to attenuate the Dox-induced oxidative stress, inflammation, apoptosis, and DNA fragmentation in Wistar rats.
Collapse
|
4
|
Torbati FA, Ramezani M, Dehghan R, Amiri MS, Moghadam AT, Shakour N, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:451-499. [PMID: 33861456 DOI: 10.1007/978-3-030-64872-5_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centella asiatica (CA) or Gotu cola is an herbal plant from the Apiaceae family with a long history of usage in different traditional medicines. It has long been used for the treatment of various ailments such as central nervous system (CNS), skin and gastrointestinal disorders especially in the Southeast Asia. This chapter focused on the phytochemical constituent and pharmacological activities of CA based on preclinical and clinical studies. Additionally, botanical description and distribution, traditional uses, interactions, and safety issues are reviewed. Electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies on the pharmacological activities of CA. Approximately, 124 chemical compounds including triterpenoids, polyphenolic compounds, and essential oils have been isolated and identified from CA. Ethnomedicinal applications of CA mostly include treatment of gastrointestinal diseases, wounds, nervous system disorders, circulatory diseases, skin problems, respiratory ailments, diabetes and sleep disorders in various ethnobotanical practices. Pharmacological studies revealed a wide range of beneficial effects of CA on CNS, cardiovascular, lung, liver, kidney, gastrointestinal, skin, and endocrine system. Among them, neuroprotective activity, wound healing and treatment of venous insufficiency, as well as antidiabetic activity seem to be more frequently reported. At the moment, considering various health benefits of CA, it is marketed as an oral supplement as well as a topical ingredient in some cosmetic products. Additional preclinical studies and particularly randomized controlled trials are needed to clarify the therapeutic roles of CA.
Collapse
Affiliation(s)
- Farshad Abedi Torbati
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Dehghan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 90:935-946. [PMID: 28460429 DOI: 10.1016/j.biopha.2017.04.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications.
Collapse
Affiliation(s)
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr Muhammad Abdo Salem
- Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|
6
|
Antunes BMM, Lira FS, Pimentel GD, Rosa Neto JC, Esteves AM, Oyama LM, de Souza CT, Gonçalves CL, Streck EL, Rodrigues B, dos Santos RV, de Mello MT. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats. Cell Biochem Funct 2015; 33:394-7. [PMID: 26373608 DOI: 10.1002/cbf.3127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 11/08/2022]
Abstract
We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p < 0.01). Hypothalamic malate dehydrogenase activity was reduced when compared with control (p < 0.05). In addition, pro-inflammatory cytokine levels were unchanged. Therefore, our results demonstrate that doxorubicin leads to an impairment of \hypothalamic energy metabolism, but do not affect the inflammatory pathway. SIGNIFICANCE PARAGRAPH: The hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term.
Collapse
Affiliation(s)
- Barbara M M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Gustavo Duarte Pimentel
- Departamento de Clínica Médica, Faculdade de Ciências Médicas (FCM), Universidade do Estadual de Campinas, Campinas, São Paulo, Brazil
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maculano Esteves
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudio Teodoro de Souza
- Laboratório de Fisiologia e Bioquímica do Exercício, Unidade de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Emilio Luiz Streck
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Bruno Rodrigues
- Faculty of Physical Education, University of Campinas (FEF-UNICAMP), São Paulo, Brazil
| | | | - Marco Túlio de Mello
- Sport Psychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Chen Y, Tang Y, Zhang YC, Huang XH, Xie YQ, Xiang Y. A metabolomic study of rats with doxorubicin-induced cardiomyopathy and Shengmai injection treatment. PLoS One 2015; 10:e0125209. [PMID: 25938766 PMCID: PMC4418690 DOI: 10.1371/journal.pone.0125209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin-induced cardiomyopathy (DOX-CM) is a severe complication of doxorubicin (DOX) chemotherapy. Characterized by cumulative and irreversible myocardial damage, its pathogenesis has not been fully elucidated. Shengmai Injection (SMI), a Traditional Chinese Medicine, may alleviate myocardial injury and improve heart function in the setting of DOX-CM. As a result of its multi-component and multi-target nature and comprehensive regulation, the pharmacological mechanisms underlying SMI’s effects remain obscure. The emerging field of metabolomics provides a potential approach with which to explore the pathogenesis of DOX-CM and the benefits of SMI treatment. DOX-CM was induced in rats via intraperitoneal injections of DOX. Cardiac metabolic profiling was performed via gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. A bioinformatics analysis was conducted via Ingenuity Pathway Analysis (IPA). Eight weeks following DOX treatment, significant cardiac remodeling, dysfunction and metabolic perturbations were observed in the rats with DOX-CM. The metabolic disturbances primarily involved lipids, amino acids, vitamins and energy metabolism, and may have been indicative of both an energy metabolism disorder and oxidative stress secondary to DOX chemotherapy. However, SMI improved cardiac structure and function, as well as the metabolism of the rats with DOX-CM. The metabolic alterations induced via SMI, including the promotion of glycogenolysis, glycolysis, amino acid utilization and antioxidation, suggested that SMI exerts cardioprotective effects by improving energy metabolism and attenuating oxidative stress. Moreover, the IPA revealed that important signaling molecules and enzymes interacted with the altered metabolites. These findings have provided us with new insights into the pathogenesis of DOX-CM and the effects of SMI, and suggest that the combination of metabolomic analysis and IPA may represent a promising tool with which to explore and better understand both heart disease and TCM therapy.
Collapse
Affiliation(s)
- Yu Chen
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yong Tang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ya-Chen Zhang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- * E-mail:
| | - Xiao-Hong Huang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Quan Xie
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Xiang
- The Division of Cardiology, Xin Hua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
8
|
Chen S, Wu S, Li W, Chen X, Dong X, Tan G, Zhang H, Hong Z, Zhu Z, Chai Y. Investigation of the therapeutic effectiveness of active components in Sini decoction by a comprehensive GC/LC-MS based metabolomics and network pharmacology approaches. MOLECULAR BIOSYSTEMS 2014; 10:3310-21. [PMID: 25315049 DOI: 10.1039/c4mb00048j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a classical formula, Sini decoction (SND) has been fully proved to be clinically effective in treating doxorubicin (DOX)-induced cardiomyopathy. Current chemomics and pharmacology proved that the total alkaloids (TA), total gingerols (TG), total flavones and total saponins (TFS) are the major active ingredients of Aconitum carmichaelii, Zingiber officinale and Glycyrrhiza uralensis in SND respectively. Our animal experiments in this study demonstrated that the above active ingredients (TAGFS) were more effective than formulas formed by any one or two of the three individual components and nearly the same as SND. However, very little is known about the action mechanisms of TAGFS. Thus, this study aimed to use for the first time the combination of GC/LC-MS based metabolomics and network pharmacology for solving this problem. By metabolomics, it was found that TAGFS worked by regulating six primary pathways. Then, network pharmacology was applied to search for specific targets. 17 potential cardiovascular related targets were found through molecular docking, 11 of which were identified by references, which demonstrated the therapeutic effectiveness of TAGFS using network pharmacology. Among these targets, four targets, including phosphoinositide 3-kinase gamma, insulin receptor, ornithine aminotransferase and glucokinase, were involved in the TAGFS regulated pathways. Moreover, phosphoinositide 3-kinase gamma, insulin receptor and glucokinase were proved to be targets of active components in SND. In addition, our data indicated TA as the principal ingredient in the SND formula, whereas TG and TFS served as adjuvant ingredients. We therefore suggest that dissecting the mode of action of clinically effective formulae with the combination use of metabolomics and network pharmacology may be a good strategy.
Collapse
Affiliation(s)
- Si Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Al-Saeedi FJ. Study of the cytotoxicity of asiaticoside on rats and tumour cells. BMC Cancer 2014; 14:220. [PMID: 24667059 PMCID: PMC3986932 DOI: 10.1186/1471-2407-14-220] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/13/2014] [Indexed: 01/14/2023] Open
Abstract
Background Cancer chemoprevention is considered one of the most promising areas in current cancer research, and asiaticoside, which is derived from the plant Centella asiatica, has a relative lack of systemic toxicity. The purpose of this study was to investigate whether asiaticoside is effective against 7,12-dimethylbenz(a)anthracene (DMBA)-induced carcinogenicity in vitro (MCF-7 and other cells) and in vivo (DMBA-induced rat cancer). Methods An MTT assay was performed involving the treatment of MCF-7 cells for 48 h with H2O2 alone and H2O2 + different asiaticoside concentrations. Flow cytometry was performed, and the level of caspase 3, tumour necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) were quantified. Adult female Sprague–Dawley (SD) rats were divided into five groups designated I (control), II (DMBA-induced cancer), III (pre- and post-treatment with asiaticoside (200 μg/animal) in DMBA-induced cancer), IV (post-treatment with asiaticoside in DMBA-induced cancer), and V (treated with asiaticoside alone, drug control). Twelve weeks post-DMBA, rats developed mammary tumours. Rats either were sacrificed or imaged with MIBI. Histological examination of tumour tissues was performed. Tumour MIBI uptake ratios were determined. The data are expressed as the means ± standard deviation. Appropriate t-test and ANOVA statistical methods were used to compare data. Results The IC50 of asiaticoside for MCF-7 cells was determined to be 40 μM. Asiaticoside has potential for hydrogen peroxide cytotoxicity, and the caspase-3 activity increased with increasing asiaticoside dose in MCF-7 cells treated for 48 h. The expression of the cytokines TNF-α and IL-1β was significantly decreased and correlated with MIBI uptake ratios in vitro and in vivo after asiaticoside administration. Conclusion This study demonstrates that asiaticoside is effective in vitro and in vivo in inducing apoptosis and enhancing anti-tumour activity.
Collapse
Affiliation(s)
- Fatma J Al-Saeedi
- Nuclear Medicine Department, Faculty of Medicine, Kuwait University, Al-Jabriya, Kuwait.
| |
Collapse
|
10
|
Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin 2012; 33:578-87. [PMID: 22447225 DOI: 10.1038/aps.2012.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate whether asiatic acid (AA), a pentacyclic triterpene in Centella asiatica, exerted neuroprotective effects in vitro and in vivo, and to determine the underlying mechanisms. METHODS Human neuroblastoma SH-SY5Y cells were used for in vitro study. Cell viability was determined with the MTT assay. Hoechst 33342 staining and flow cytometry were used to examine the apoptosis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye. PGC-1α and Sirt1 levels were examined using Western blotting. Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13, and orally administered with AA on PD 14 daily for 30 d. The learning and memory of the mice were evaluated with the Morris water maze test. HE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions. RESULTS Pretreatment of SH-SY5Y cells with AA (0.1-100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner. AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS), stabilized the mitochondrial membrane potential (MMP), and promoted the expression of PGC-1α and Sirt1. In the mice models, oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test, and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels. AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer in the CA1 and CA3 regions. CONCLUSION AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro.
Collapse
|
11
|
Tan G, Lou Z, Liao W, Zhu Z, Dong X, Zhang W, Li W, Chai Y. Potential biomarkers in mouse myocardium of doxorubicin-induced cardiomyopathy: a metabonomic method and its application. PLoS One 2011; 6:e27683. [PMID: 22110719 PMCID: PMC3218026 DOI: 10.1371/journal.pone.0027683] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/21/2011] [Indexed: 01/21/2023] Open
Abstract
Background Doxorubicin (DOX) is one of the most potent antitumor agents available; however, its clinical use is limited because of the risk of severe cardiotoxicity. Though numerous studies have ascribed DOX cardiomyopathy to specific cellular pathways, the precise mechanism remains obscure. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against DOX-induced cardiomyopathy. However, its action mechanisms are not well known due to its complex components. Methodology/Principal Findings A tissue-targeted metabonomic method using gas chromatography–mass spectrometry was developed to characterize the metabolic profile of DOX-induced cardiomyopathy in mice. With Elastic Net for classification and selection of biomarkers, twenty-four metabolites corresponding to DOX-induced cardiomyopathy were screened out, primarily involving glycolysis, lipid metabolism, citrate cycle, and some amino acids metabolism. With these altered metabolic pathways as possible drug targets, we systematically analyzed the protective effect of TCM SND, which showed that SND administration could provide satisfactory effect on DOX-induced cardiomyopathy through partially regulating the perturbed metabolic pathways. Conclusions/Significance The results of the present study not only gave rise to a systematic view of the development of DOX-induced cardiomyopathy but also provided the theoretical basis to prevent or modify expected damage.
Collapse
Affiliation(s)
- Guangguo Tan
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Ziyang Lou
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wenting Liao
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wuhong Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Ammar HI, Saba S, Ammar RI, Elsayed LA, Ghaly WBAA, Dhingra S. Erythropoietin protects against doxorubicin-induced heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H2413-21. [PMID: 21984540 DOI: 10.1152/ajpheart.01096.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hormone erythropoietin (EPO) has been demonstrated to have cardioprotective properties. The present study investigates the role of EPO to prevent heart failure following cancer treatment with doxorubicin [adriamycin (AD)]. Male Wistar rats (150 ± 10 g) were treated with saline (vehicle control group); with EPO, subcutaneously at 1,000 IU/kg body wt, three times per week for 4 wk (EPO group); with adriamycin, intraperitoneally at 2.5 mg/kg body wt, three times per week for 2 wk (AD group); and with adriamycin and EPO (EPO-AD group). Echocardiographic measurements showed that EPO-AD treatment prevented the AD-induced decline in cardiac function. Each of the hearts was then exposed to ischemia and reperfusion during Langendorff perfusion. The percentage of recovery after ischemia-reperfusion was significantly greater in EPO-AD than the AD-treated group for left ventricular developed pressure, maximal increase in pressure, and rate pressure product. The level of oxidative stress was significantly higher in AD (5 μM for 24 h)-exposed isolated cardiomyocytes; EPO (5 U/ml for 48 h) treatment prevented this. EPO treatment also decreased AD-induced cardiomyocyte apoptosis, which was associated with the decrease in the Bax-to-Bcl2 ratio and caspase-3 activation. Immunostaining of myocardial tissue for CD31 showed a significant decrease in the number of capillaries in AD-treated animals. EPO-AD treatment restored the number of capillaries. In conclusion, EPO treatment effectively prevented AD-induced heart failure. The protective effect of EPO was associated with a decreased level of oxidative stress and apoptosis in cardiomyocytes as well as improved myocardial angiogenesis.
Collapse
|
13
|
Mhawi AA. Interaction of doxorubicin with the subcellular structures of the sensitive and Bcl-xL-overexpressing MCF-7 cell line: Confocal and low-energy-loss transmission electron microscopy. Micron 2009; 40:702-12. [DOI: 10.1016/j.micron.2009.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/09/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
|
14
|
|
15
|
Panda S, Kar A. Periplogenin-3-O- -D-Glucopyranosyl -(1→6)- -D-Glucopyaranosyl- -(1→4) -D-Cymaropyranoside, Isolated fromAegle marmelosProtects Doxorubicin Induced Cardiovascular Problems and Hepatotoxicity in Rats. Cardiovasc Ther 2009; 27:108-16. [DOI: 10.1111/j.1755-5922.2009.00078.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Shen Y, Liu A, Ye M, Wang L, Chen J, Wang XR, Han C. Analysis of Biologically Active Constituents in Centella asiatica by Microwave-Assisted Extraction Combined with LC–MS. Chromatographia 2009. [DOI: 10.1365/s10337-009-1152-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Injac R, Strukelj B. Recent advances in protection against doxorubicin-induced toxicity. Technol Cancer Res Treat 2009; 7:497-516. [PMID: 19044329 DOI: 10.1177/153303460800700611] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anthracycline antibiotics are among the most effective and commonly used anticancer drugs. Unfortunately, their clinical use is restricted by dose-dependent toxicity. Doxorubicin is an anthracycline antibiotic and cytotoxic (antineoplastic) agent. It is commonly used against ovarian, breast, lung, uterine and cervical cancers, Hodgkin's disease, soft tissue and primary bone sarcomas, as well against in several other cancer types. It has been shown that free radicals are involved in doxorubicin-induced toxicity. Doxorubicin causes the generation of free radicals and the induction of oxidative stress, associated with cellular injury. This review illustrates recent applications of different natural products, drugs, drug delivery systems, and approaches for protection against doxorubicin-induced toxicity (2006-present).
Collapse
Affiliation(s)
- R Injac
- University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| | | |
Collapse
|
18
|
Protective effects of fullerenol against chronic doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. HEMIJSKA INDUSTRIJA 2009. [DOI: 10.2298/hemind0903259i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since the introduction of Doxorubicin (Dox) for the treatment of cancer in 1969, this compound has demonstrated high antitumor efficacy. Dox's use in chemotherapy has been limited largely due to its diverse toxicities, including cardiac, liver, renal, pulmonary, hematological and testicular toxicity. Various attempts have been made to reduce Dox-induced toxicity. These include dosage optimization, synthesis and use of analogues. Moreover, a number of agents have been investigated as protective agents during Dox therapy. Polyhydroxilated derivatives of fullerene, named fullerenols C60(OH)n, are being extensively studied due to their great potential as antioxidants. It is proposed that they might act as free radical scavengers in biological systems, in xenobiotics-induced oxidative stress as well as against radioactive irradiation. We have investigated the effects of fullerenol C60(OH)24 (Frl) at doses of 25, 50 and 100 mg kg-1 week (for a time-span of three weeks) on heart and liver tissue after Doxorubicin (Dox)-induced toxicity in rats with colorectal cancer. In the present study, in vivo Wistar male rat model was used to explore whether Frl could protect against Dox-induced (1.5 mg/kg/week for three weeks) chronic cardio- and hepatotoxicity and compared the effect with a well-known antioxidant, vitamin C (100 mg/kg/week for three weeks). Commercially available methods were used for blood and pathohystological analysis and for the measurement of enzyme activity (SOD, MDA, GSH, GSSH, GPx, GR, CAT, CK, LDH, ?-HBDH, AST, ALT) in serum and homogenate samples of heart and liver tissues. According to macroscopic, microscopic, hematological, biochemical, physiological, pharmacological, and pharmacokinetic results, we confirmed that, at all examined doses, Frl exhibits a protective influence on the heart and liver tissue against chronic toxicity induced by Dox.
Collapse
|
19
|
Injac R, Perse M, Cerne M, Potocnik N, Radic N, Govedarica B, Djordjevic A, Cerar A, Strukelj B. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 2008; 30:1184-96. [PMID: 19046599 DOI: 10.1016/j.biomaterials.2008.10.060] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
The effects of fullerenol C60(OH)24 (Frl) at doses of 25, 50, and 100mg/kg/week (for a time-span of 3 weeks) on heart and liver tissue after doxorubicin (Dox)-induced toxicity in rats with colorectal cancer were investigated. In the present study, we used an in vivo Wistar male rat model to explore whether Frl could protect against Dox-induced (1.5mg/kg/week for 3 weeks) chronic cardio- and hepato- toxicity and compared the effect with a well-known antioxidant, vitamin C (100mg/kg/week for 3 weeks). According to macroscopic, microscopic, hematological, biochemical, physiological, pharmacological, and pharmacokinetic results, we confirmed that, at all examined doses, Frl exhibits a protective influence on the heart and liver tissue against chronic toxicity induced by Dox.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, Institute of Pharmaceutical Biology, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jia G, Lu X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J Chromatogr A 2008; 1193:136-41. [DOI: 10.1016/j.chroma.2008.04.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
|
21
|
Injac R, Perse M, Boskovic M, Djordjevic-Milic V, Djordjevic A, Hvala A, Cerar A, Strukelj B. Cardioprotective Effects of Fullerenol C60(Oh)24 on a Single Dose Doxorubicin-induced Cardiotoxicity in Rats with Malignant Neoplasm. Technol Cancer Res Treat 2008; 7:15-25. [DOI: 10.1177/153303460800700102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The therapeutic utility of the anthracycline antibiotic doxorubicin is limited due to its cardiotoxicity. Our aim was to investigate the efficacy of fullerenol C60(OH)24 in preventing single, high-dose doxorubicin-induced cardiotoxicity in rats with malignant neoplasm. Experiment was performed on adult female Sprague Dawley rats with chemically induced mammary carcinomas. The animals were sacrificed two days after the application of doxorubicin and/or fullerenol, and the serum activities of CK, LDH and α-HBDH, as well as the levels of MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR, and TAS in the heart, were determined. The results obtained from the enzymatic activity in the serum show that the administration of a single dose of 8 mg/kg in all treated groups induces statistically significant damage. There are significant changes in the enzymes of LDH and CK (p < 0.05), after an i.p. administration of doxorubicin/fullerenol and fullerenol. Comparing all groups with untreated control group, point to the conclusion that in the case of a lower α-HBDH/LDH ratio, results in more serious the liver parenchymal damage. The results revealed that doxorubicin induced oxidative damage and that the fullerenol antioxidative influence caused significant changes in MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR, and TAS level in the heart (p < 0.05). Therefore, it is suggested that fullerenol might be a potential cardioprotector in doxorubicin-treated individuals.
Collapse
Affiliation(s)
- Rade Injac
- Institute of Pharmaceutical Biology University of Ljubljana Askerceva 7, 1000 Ljubljana, Slovenia
| | - Martina Perse
- Institute of Pathology Medical Experimental Centre Medical Faculty, University of Ljubljana Korytkova 2, 1000 Ljubljana Slovenia
| | - Marija Boskovic
- Institute of Pharmacokinetics and Biopharmaceutics University of Ljubljana Askerceva 7, 1000 Ljubljana, Slovenia
| | | | - Aleksandar Djordjevic
- Department of Chemistry University of Novi Sad Trg Dositeja Obradovica 3 21000 Novi Sad, Serbia
| | - Anastazija Hvala
- Institute of Pathology University of Ljubljana Korytkova 2, 1000 Ljubljana, Slovenia
| | - Anton Cerar
- Institute of Pathology Medical Experimental Centre Medical Faculty, University of Ljubljana Korytkova 2, 1000 Ljubljana Slovenia
| | - Borut Strukelj
- Institute of Pharmaceutical Biology University of Ljubljana Askerceva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Doxorubicin-induced myocardial failure in rats with malignant neoplasm: Protective role of fullerenol C60(OH)24. HEMIJSKA INDUSTRIJA 2008. [DOI: 10.2298/hemind0803197i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The therapeutic utility of the anthracycline antibiotic doxorubicin is limited due to its cardiotoxicity. Our aim was to investigate the efficacy of fullerenol C60(OH)24 in preventing single, high-dose doxorubicin-induced cardiotoxicity in rats with malignant neoplasm. In vitro and in vivo studies have shown that fullerenol C60(OH)24, has strong antioxidative potential. Experiment was performed on adult female Sprague Dawley rats with chemically induced mammary carcinomas. All 32 rats (2-5 groups) received i.p. applications of 1-methyl-l-nitrosourea (MNU; 50 mg/kg body weight) on the 50th and 113th day of age. Animals were randomly divided into five groups as follows: (1) Untreated control group - rats received saline only; (2) Cancer control group - rats received MNU and saline; (3) Dox group - rats received MNU and Dox 8 mg/kg; (4) Full/Dox group -rats received MNU and Full 100 mg/kg 30 min before Dox 8 mg/kg; (5) Full group - rats received MNU and Full 100 mg/kg. Tumor incidence was 4.94 +- 0.576 per rat. The animals were sacrificed 2 days after the application of doxorubicin and/or fullerenol, and the serum activities of CK, LDH and ?-HBDH, as well as the levels of MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR and TAS in the heart, were determined. The results obtained from the enzymatic activity in the serum show that the administration of a single dose of 8 mg/kg in all treated groups induces statistically significant damage. There are significant changes in the enzymes of LDH and CK (p < 0.05), after an i.p. administration of doxorubicin/fullerenol and fullerenol. Comparing all groups with untreated control group, point to the conclusion that in the case of a lower oc-HBDH/LDH ratio, results in more serious the liver parenchymal damage. The results revealed that doxorubicin induced oxidative damage and that the fullerenol antioxidative influence caused significant changes in MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR and TAS level in the heart (p < 0.05). Ultra structural analysis of heart tissues from rats treated with doxorubicin and indicated that the hearts of the rats were protected from doxorubicin-induced subcellular damage. Doxorubicin/fullerenol rats did not appear to show significant cardiac damage although occasional focal loss of cristae in the mitochondria was observed. Therefore, it is suggested that fullerenol might be a potential cardioprotector in doxorubicin-treated individuals.
Collapse
|
23
|
Influence of fullerenol C60(OH)24 on enzime status in serum of rats after single dose administration of doxorubicine. HEMIJSKA INDUSTRIJA 2008. [DOI: 10.2298/hemind0803191g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antracycline antibiotics have one of the widest areas of use in oncology. The most investigated mechanisms of their antineoplastic activity include: interactions of these antibiotics with DNA, inhibition of topoisomerase II and production of free radicals. However, the side effects of doxorubicin, especially cardiotoxicity, are the limiting factor of its use in cancer therapy. The aim of this research was to investigate the influence of fullerenol ?60(?H)24 as a cytoprotector in single doze administration of doxorubicin on the activity of enzymes in serum (CK, AST, ALT, LDH and a-HBDH) in rats in in vivo system. Activity of enzymes (CK, LDH, HBDH, AST, and ALT) in serume was measured with standard commercial methods. The results of analysis of the samples treated with the combination of fullerenol and doxorubicin show no difference in enzyme activity in comparison with the control group. The results indicate the possibility of using fullerenol as a protector in the therapy with doxorubicin in malign neoplasm.
Collapse
|
24
|
Acute Administration of Epirubicin Induces Myocardial Depression in Isolated Rat Heart and Production of Radical Species Evaluated by Electron Spin Resonance Spectroscopy. J Cardiovasc Pharmacol 2007; 50:647-53. [DOI: 10.1097/fjc.0b013e31815571f7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|