1
|
Fasimoye R, Dong W, Nirujogi RS, Rawat ES, Iguchi M, Nyame K, Phung TK, Bagnoli E, Prescott AR, Alessi DR, Abu-Remaileh M. Golgi-IP, a tool for multimodal analysis of Golgi molecular content. Proc Natl Acad Sci U S A 2023; 120:e2219953120. [PMID: 37155866 PMCID: PMC10193996 DOI: 10.1073/pnas.2219953120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.
Collapse
Affiliation(s)
- Rotimi Fasimoye
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Wentao Dong
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Eshaan S. Rawat
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Miharu Iguchi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Kwamina Nyame
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Monther Abu-Remaileh
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 2016; 48:1751-74. [DOI: 10.1007/s00726-016-2267-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
|
3
|
Creatine kinase in cell cycle regulation and cancer. Amino Acids 2016; 48:1775-84. [PMID: 27020776 DOI: 10.1007/s00726-016-2217-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023]
Abstract
The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK.
Collapse
|
4
|
Simionescu-Bankston A, Pichavant C, Canner JP, Apponi LH, Wang Y, Steeds C, Olthoff JT, Belanto JJ, Ervasti JM, Pavlath GK. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am J Physiol Cell Physiol 2015; 308:C919-31. [PMID: 25810257 DOI: 10.1152/ajpcell.00029.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/22/2022]
Abstract
Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia; Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Christophe Pichavant
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - James P Canner
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Yanru Wang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Craig Steeds
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
5
|
Ramírez Ríos S, Lamarche F, Cottet-Rousselle C, Klaus A, Tuerk R, Thali R, Auchli Y, Brunisholz R, Neumann D, Barret L, Tokarska-Schlattner M, Schlattner U. Regulation of brain-type creatine kinase by AMP-activated protein kinase: interaction, phosphorylation and ER localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1271-83. [PMID: 24727412 DOI: 10.1016/j.bbabio.2014.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca²⁺-pumping.
Collapse
Affiliation(s)
- Sacnicte Ramírez Ríos
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Frédéric Lamarche
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Cécile Cottet-Rousselle
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Anna Klaus
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Roland Tuerk
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Ramon Thali
- Institute of Cell Biology, ETH Zurich, Switzerland
| | - Yolanda Auchli
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | - René Brunisholz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Switzerland
| | | | - Luc Barret
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France; Inserm, U1055, Grenoble, France.
| |
Collapse
|
6
|
Kobayashi M, Hamanoue M, Masaki T, Furuta Y, Takamatsu K. Hippocalcin mediates calcium-dependent translocation of brain-type creatine kinase (BB-CK) in hippocampal neurons. Biochem Biophys Res Commun 2012; 429:142-7. [PMID: 23142228 DOI: 10.1016/j.bbrc.2012.10.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 02/03/2023]
Abstract
Hippocalcin (Hpca) is a Ca(2+)-binding protein that is expressed in neurons and contributes to neuronal plasticity. We purified a 48 kDa Hpca-associated protein from rat brain and identified it to be the creatine kinase B (CKB) subunit, which constitutes brain-type creatine kinase (BB-CK). Hpca specifically bound to CKB in a Ca(2+)-dependent manner, but not to the muscle-type creatine kinase M subunit. The N-terminal region of Hpca was required for binding to CKB. Hpca mediated Ca(2+)-dependent partial translocation of CKB (approximately 10-15% of total creatine kinase activity) to membranes. N-myristoylation of Hpca was critical for membrane translocation, but not for binding to CKB. In cultured hippocampal neurons, ionomycin treatment led to colocalization of Hpca and CKB adjacent to the plasma membrane. These results indicate that Hpca associates with BB-CK and that together they translocate to membrane compartments in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Masaaki Kobayashi
- Department of Physiology, Toho University School of Medicine, Ohmori-nishi 5-21-16, Ohta-ku, Tokyo 143-8540, Japan
| | | | | | | | | |
Collapse
|
7
|
Liu YM, Feng S, Ding XL, Kang CF, Yan YB. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding. Int J Biol Macromol 2009; 44:271-7. [PMID: 19263506 DOI: 10.1016/j.ijbiomac.2008.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK), a key enzyme in maintaining the intracellular energetic homeostasis, contains two domains connected by a long linker. In this research,we found that the mutations of the conserved Asp122 in the linker slightly affected CK activity, structure and stability. The hydrogen bonding and the ion pair contributed 2-5 kJ/mol to the conformational stability of CK. Interestingly, the ability of CK reactivation from the denatured state was completely removed by the mutations. These results suggested that the electrostatic interactions were crucial to the action of the linker in CK reactivation.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
8
|
Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009; 10:2763-2788. [PMID: 19582228 PMCID: PMC2705515 DOI: 10.3390/ijms10062763] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 02/06/2023] Open
Abstract
A key property of complex biological systems is the presence of interaction networks formed by its different components, primarily proteins. These are crucial for all levels of cellular function, including architecture, metabolism and signalling, as well as the availability of cellular energy. Very stable, but also rather transient and dynamic protein-protein interactions generate new system properties at the level of multiprotein complexes, cellular compartments or the entire cell. Thus, interactomics is expected to largely contribute to emerging fields like systems biology or systems bioenergetics. The more recent technological development of high-throughput methods for interactomics research will dramatically increase our knowledge of protein interaction networks. The two most frequently used methods are yeast two-hybrid (Y2H) screening, a well established genetic in vivo approach, and affinity purification of complexes followed by mass spectrometry analysis, an emerging biochemical in vitro technique. So far, a majority of published interactions have been detected using an Y2H screen. However, with the massive application of this method, also some limitations have become apparent. This review provides an overview on available yeast two-hybrid methods, in particular focusing on more recent approaches. These allow detection of protein interactions in their native environment, as e.g. in the cytosol or bound to a membrane, by using cytosolic signalling cascades or split protein constructs. Strengths and weaknesses of these genetic methods are discussed and some guidelines for verification of detected protein-protein interactions are provided.
Collapse
Affiliation(s)
- Anna Brückner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| | - Cécile Polge
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
| | - Nicolas Lentze
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Daniel Auerbach
- Dualsystems Biotech AG / Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | - Uwe Schlattner
- INSERM U884, Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, 2280 Rue de la Piscine, BP 53, Grenoble Cedex 9, France
- Author to whom correspondence should be addressed; E-Mails:
(A.B.);
(U.S.); Tel. +33-476-514-671, 635-399; Fax: +33-476-514-218
| |
Collapse
|
9
|
O'Connor RS, Steeds CM, Wiseman RW, Pavlath GK. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J Physiol 2008; 586:2841-53. [PMID: 18420707 DOI: 10.1113/jphysiol.2008.151027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.
Collapse
Affiliation(s)
- Roddy S O'Connor
- Emory University, Department of Pharmacology, 1510 Clifton Rd, Room 5027, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
10
|
Eimre M, Paju K, Pelloux S, Beraud N, Roosimaa M, Kadaja L, Gruno M, Peet N, Orlova E, Remmelkoor R, Piirsoo A, Saks V, Seppet E. Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:514-24. [PMID: 18423391 DOI: 10.1016/j.bbabio.2008.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 12/18/2022]
Abstract
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.
Collapse
Affiliation(s)
- Margus Eimre
- Department of Pathophysiology, Centre of Molecular and Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Segal M, Avital A, Drobot M, Lukanin A, Derevenski A, Sandbank S, Weizman A. CK levels in unmedicated bipolar patients. Eur Neuropsychopharmacol 2007; 17:763-7. [PMID: 17628446 DOI: 10.1016/j.euroneuro.2007.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 04/05/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Various reports have described increased serum creatine kinase (CK) activity in the majority of hospitalized acutely disturbed schizophrenics and patients with affective psychoses. We investigated CK serum levels of 52 unmedicated bipolar inpatients, in manic versus depressive states. Additional 17 patients were evaluated in both states. Hamilton Rating Scale for Depression and Young Mania Rating Scale were used and blood samples were obtained from new admitted patients. Higher CK level was found in the manic patients compared with the depressed ones. Likewise, the CK level was higher in the manic phase than in the depressive one, when tested within the same patient. Our results suggest that the clinical differences between mania and depression states are supported by contrasting levels of CK. The lack of correlations between CK level and motor items suggest that CK level in mania versus depression could emphasize the "thinking speed" and not the motor one.
Collapse
Affiliation(s)
- Michael Segal
- Flügelman's (Mazra) Mental Health Medical Center, Acre, Israel.
| | | | | | | | | | | | | |
Collapse
|