1
|
Tasić D, Dimitrijević Z. The Role of Oxidative Stress as a Mechanism in the Pathogenesis of Acute Heart Failure in Acute Kidney Injury. Diagnostics (Basel) 2024; 14:2094. [PMID: 39335773 PMCID: PMC11431490 DOI: 10.3390/diagnostics14182094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Despite a large amount of research on synchronous and mutually induced kidney and heart damage, the basis of the disease is still not fully clarified. Healthy mitochondria are essential for normal kidney and heart function. Mitochondrial dysfunction occurs when the clearance or process of generation and fragmentation of mitochondria is disturbed. The kidney is the second organ after the heart in terms of the number of mitochondria. Kidney tubules are rich in mitochondria due to the high energy requirements for absorption of large amounts of ultrafiltrate and dissolved substances. The place of action of oxidative stress is the influence on the balance in the production and breakdown of the mitochondrial reactive oxygen species. A more precise determination of the place and role of key factors that play a role in the onset of the disease is necessary for understanding the nature of the onset of the disease and the creation of therapy in the future. This underscores the urgent need for further research. The narrative review integrates results found in previously performed studies that have evaluated oxidative stress participation in cardiorenal syndrome type 3.
Collapse
Affiliation(s)
- Danijela Tasić
- Clinic of Nephrology Prof Dr Spira Strahinjić, University Clinical Center Niš, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | | |
Collapse
|
2
|
Synergic effect of combined cyclosporin and melatonin protects the brain against acute ischemic reperfusion injury. Biomed Pharmacother 2021; 136:111266. [PMID: 33465677 DOI: 10.1016/j.biopha.2021.111266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND This study tested whether combined cyclosporin-A (CsA) and melatonin (Mel) was superior to either one on protecting the brain against ischemia (occluded left-middle-cerebral-artery for 90-min)-reperfusion (for 14 days) injury. METHODS AND RESULTS Neuro-2a cells (N2a) were categorized into groups 1 (N2a), 2 (N2a-IR), 3 (N2a-IR-Mel), 4 (N2a-IR-CsA) and 5 (N2a-IR-CsA-Mel). in vitro results showed the protein expressions of cytosolic-cytochrome-C/mitochondrial-Bax/cleaved-capase-3/NOX-1/NOX-2 and flow-cytometric results of ROS (DCFDA/Mito-SOX) were highest in group 2, lowest in group 1, significantly lower in group 5 than in groups 3/4, but they showed no difference in groups 3/4 (all p < 0.001). Male-adult-SD rats (50) were equally categorized into groups 1 (sham-operated-control), 2 (IR), 3 (IR-CsA/20.0 mg/kg at 0.5/24/48 h intraperitoneally after IR), 4 (IR-Mel/50.0 mg/kg intraperitoneally at 30 min and 30 mg/kg at 6/24/48 h after IR) and 5 (IR-CsA-Mel). The brain-infarct-area (BIA) (at day-3 by TTC-stain) was lowest in group 1, highest in group 2, significantly lower in group 5 than groups 3/4, but it showed no difference between groups 3/4 whereas the brain-infarct-volume (at day 14 by MRI) was similar as BIA except for significantly lower in group 4 than in group 3 (all p < 0.0001). By day 14, microscopic finding showed the numbers of glial+/GFAP+/AQP + cells expressed an identical trend whereas the number of NeuN + cells exhibited an opposite pattern of BIA among the groups (all p < 0.0001). The protein expressions of oxidative-stress (NOX-1/NOX-2/p22phox/oxidized-protein), inflammatory (TNF-α/p-NF-κB/MMP-9), apoptotic (mitochondrial-Bax/caspase-3/PARP) and mitochondrial-damaged (Cyclophilin-D/DRP1/cytosolic-cytochrome-C) biomarkers displayed an identical pattern of BIA among the five groups (all p < 0.0001). CONCLUSION Combined CsA-Mel was superior to either CsA or Mel on protecting the brain against IR injury.
Collapse
|
3
|
Zahran R, Ghozy A, Elkholy SS, El-Taweel F, El-Magd MA. Combination therapy with melatonin, stem cells and extracellular vesicles is effective in limiting renal ischemia-reperfusion injury in a rat model. Int J Urol 2020; 27:1039-1049. [PMID: 32794300 DOI: 10.1111/iju.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the therapeutic value of melatonin, mesenchymal stem cells and their extracellular vesicles, exosomes, on renal ischemia-reperfusion. METHODS Female albino rats (n = 64) were divided into eight groups (n = 8 per group): control, sham (only laparotomy), renal ischemia-reperfusion (renal ischemia-reperfusion + phosphate-buffered saline), melatonin (renal ischemia-reperfusion + melatonin), mesenchymal stem cells (renal ischemia-reperfusion + mesenchymal stem cells), exosomes (renal ischemia-reperfusion + exosomes), melatonin + mesenchymal stem cells (renal ischemia-reperfusion + melatonin + mesenchymal stem cells) and melatonin + exosomes (renal ischemia-reperfusion + melatonin + exosomes). After the establishment of the renal ischemia-reperfusion model, rats in each group were bilaterally injected once with either mesenchymal stem cells or exosomes in both renal arteries during reperfusion. RESULTS Notable improvement of renal ischemia-reperfusion was obtained after different treatments, as evidenced by a lower histopathological score of kidney injury; decreased serum levels of urea, creatinine and retinol-binding protein; reduced lipid peroxidation marker malondialdehyde; increased superoxide dismutase and catalase activities; reduced apoptosis (lower DNA damage and B-cell lymphoma 2-associated X protein, and higher B-cell lymphoma 2 genes/proteins); and inhibition of kidney inflammatory and damage markers (tumor necrosis alpha, interleukin-1β, nuclear factor kappa B, kidney injury molecule-1, IL-18, matrix metalloproteinase 9, neutrophil gelatinase-associated lipocalin). The improvement order was (highest to lowest): melatonin + exosomes, melatonin + mesenchymal stem cells, exosomes, mesenchymal stem cells and melatonin group. CONCLUSIONS Our data suggest a potential therapeutic effect of combined therapy with melatonin, mesenchymal stem cells and their exosomes to minimize renal ischemia-reperfusion injury in rats.
Collapse
Affiliation(s)
- Rasha Zahran
- Department of Chemistry (Biochemistry Division), Faculty of Science, Damietta University, Damietta, Egypt
| | - Asmaa Ghozy
- Department of Chemistry (Biochemistry Division), Faculty of Science, Damietta University, Damietta, Egypt
| | - Sanad S Elkholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Fathy El-Taweel
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mohammed Abu El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
4
|
Muroya Y, He X, Fan L, Wang S, Xu R, Fan F, Roman RJ. Enhanced renal ischemia-reperfusion injury in aging and diabetes. Am J Physiol Renal Physiol 2018; 315:F1843-F1854. [PMID: 30207168 DOI: 10.1152/ajprenal.00184.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence and severity of acute kidney injury is increased in patients with diabetes and with aging. However, the mechanisms involved have not been clearly established. The present study examined the effects of aging and diabetes on the severity of renal ischemia-reperfusion (IR) injury in Sprague-Dawley (SD) and type 2 diabetic (T2DN) rats. T2DN rats develop diabetes at 3 mo of age and progressive proteinuria and diabetic nephropathy as they age from 6 to 18 mo. Plasma creatinine levels after bilateral IR were significantly higher (3.4 ± 0.1 mg/dl) in 18-mo-old elderly T2DN rats than in middle-aged (12 mo) T2DN rats with less severe diabetic nephropathy or young (3 mo) and elderly (18 mo) control SD rats (1.5 ± 0.2, 1.8 ± 0.1, and 1.7 ± 0.1 mg/dl, respectively). Elderly T2DN rats exhibited a greater fall in medullary blood flow 2 h following renal IR and a more severe and prolonged decline in glomerular filtration rate than middle-aged T2DN and young or elderly SD rats. The basal expression of the adhesion molecules ICAM-1 and E-selectin and the number of infiltrating immune cells was higher in the kidney of elderly T2DN than age-matched SD rats or young and middle-aged T2DN rats before renal IR. These results indicate that elderly T2DN rats with diabetic nephropathy are more susceptible to renal IR injury than diabetic animals with mild injury or age-matched control animals. This is associated with increased expression of ICAM-1, E-selectin and immune cell infiltration, renal medullary vasocongestion, and more prolonged renal medullary ischemia.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Faculty of Medicine, Tohoku Medical and Pharmaceutical University , Sendai , Japan.,Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaochen He
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Rui Xu
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
5
|
Saad A, Herrmann SMS, Eirin A, Ferguson CM, Glockner JF, Bjarnason H, McKusick MA, Misra S, Lerman LO, Textor SC. Phase 2a Clinical Trial of Mitochondrial Protection (Elamipretide) During Stent Revascularization in Patients With Atherosclerotic Renal Artery Stenosis. Circ Cardiovasc Interv 2018; 10:CIRCINTERVENTIONS.117.005487. [PMID: 28916603 DOI: 10.1161/circinterventions.117.005487] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Atherosclerotic renal artery stenosis reduces renal blood flow (RBF) and amplifies stenotic kidney hypoxia. Revascularization with percutaneous transluminal renal angioplasty (PTRA) and stenting often fails to recover renal function, possibly because of ischemia/reperfusion injury developing after PTRA. Elamipretide is a mitochondrial-targeted peptide that binds to cardiolipin and stabilizes mitochondrial function. We tested the hypothesis that elamipretide plus PTRA would improve renal function, oxygenation, and RBF in patients with atherosclerotic renal artery stenosis undergoing PTRA. METHODS AND RESULTS Inpatient studies were performed in patients with severe atherosclerotic renal artery stenosis scheduled for PTRA. Patients were treated before and during PTRA with elamipretide (0.05 mg/kg per hour intravenous infusion, n=6) or placebo (n=8). Stenotic kidney cortical/medullary perfusion and RBF were measured using contrast-enhanced multidetector CT, and renal oxygenation by 3-T blood oxygen level-dependent magnetic resonance imaging before and 3 months after PTRA. Age and basal glomerular filtration rate did not differ between groups. Blood oxygen level-dependent imaging demonstrated increased fractional hypoxia 24 hours after angiography and stenting in placebo (+47%) versus elamipretide (-6%). These were reverted to baseline 3 months later. Stenotic kidney RBF rose (202±29-262±115 mL/min; P=0.04) 3 months after PTRA in the elamipretide-treated group only. Over 3 months, systolic blood pressure decreased, and estimated glomerular filtration rate increased (P=0.003) more in the elamipretide group than in the placebo group (P=0.11). CONCLUSIONS Adjunctive elamipretide during PTRA was associated with attenuated postprocedural hypoxia, increased RBF, and improved kidney function in this pilot trial. These data support a role for targeted mitochondrial protection to minimize procedure-associated ischemic injury and to improve outcomes of revascularization for human atherosclerotic renal artery stenosis. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01755858.
Collapse
Affiliation(s)
- Ahmed Saad
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Sandra M S Herrmann
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Christopher M Ferguson
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - James F Glockner
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Haraldur Bjarnason
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Michael A McKusick
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Sanjay Misra
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN
| | - Stephen C Textor
- From the Division of Nephrology and Hypertension (A.S., S.M.S.H., A.E., C.M.F., L.O.L., S.C.T.) and Department of Radiology (J.F.G., H.B., M.A.M., S.M.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Jung M, Brüne B, Hotter G, Sola A. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci Rep 2016; 6:21950. [PMID: 26911537 PMCID: PMC4766505 DOI: 10.1038/srep21950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | - Georgina Hotter
- Department of Ischemia and Inflammation, IIBB-CSIC-IDIBAPS, Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Sola
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.,Department of Experimental Nephrology, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Shen B, Zhou S, He Y, Zhao H, Mei M, Wu X. Revealing the underlying mechanism of ischemia reperfusion injury using bioinformatics approach. Kidney Blood Press Res 2014; 38:99-108. [PMID: 24603189 DOI: 10.1159/000355759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS To reveal the potential pathogenesis of ischemia/reperfusion (I/R) injury. METHODS GSE9943 were downloaded from Genome Expression Omnibus database, including I/R and control samples for both Brown Norway (BN) and Sprague Dawley (SD) rats (3 rats/each group). Then differentially expressed genes (DEGs) were identified by limma package. miRNA-target gene network pairs were predicted using WebGestalt, and protein-protein interactions (PPI) were identified based on STRING database, followed by the networks construction using Cytoscape. Next, ClusterONE was used for modules screening. Furthermore, functional analyses were performed to common DEGs and genes. RESULTS Totally, 23 common DEGs of BR and SD rats were screened, enriched in functions, such as regulation of cellular protein metabolic process, response to wounding, proteinaceous extracellular matrix, and Enzyme inhibitor activity. MIR-29A, MIR-29B and MIR-29C were discovered both in up- and down-regulated miRNA-target gene networks. Genes in the PPI network were significantly disturbed in p53 signaling, complement and coagulation cascades pathway. Four modules were found significantly disturbed cytochrome P450, Serine/threonine protein kinase, calcium binding and Transient receptor potential channel protein domains. CONCLUSION During I/R injury, many genes mutated, interrupting several biological functions, pathways and protein domains. MIR-29C and TRPC6 were suggested to be potential novel targets for this disease. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Bingbing Shen
- Department of kidney, Southwest hospital of Third Military Medical University, Chongqing City, 400038, China
| | | | | | | | | | | |
Collapse
|
8
|
Abu-Saleh N, Awad H, Khamaisi M, Armaly Z, Karram T, Heyman SN, Kaballa A, Ichimura T, Holman J, Abassi Z. Nephroprotective effects of TVP1022, a non-MAO inhibitor S-isomer of rasagiline, in an experimental model of diabetic renal ischemic injury. Am J Physiol Renal Physiol 2014; 306:F24-33. [DOI: 10.1152/ajprenal.00379.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute kidney injury (iAKI) in diabetes mellitus is associated with a rapid deterioration of kidney function, more than in nondiabetic subjects. TVP1022, a non-MAO inhibitor S-isomer of rasagiline, possesses antioxidative and antiapoptotic activities. The current study examines the effects of TVP1022 and tempol on iAKI in diabetic rats. Diabetes was induced by streptozotocin. iAKI was induced by clamping the left renal artery for 30 min in both diabetic and nondiabetic rats. The right intact kidney served as a control. Forty-eight hours following ischemia, urinary flow (V), sodium excretion (UNaV), and glomerular filtration rate (GFR) in both ischemic and nonischemic kidneys were determined. The nephroprotective effects of tempol and TVP1022 were examined in these rats. Hematoxylin and eosin staining, 4-hydroxynonenal (4-HNE) immunofluorescence, and nitrotyrosine immunohistochemistry were performed on renal tissues of the various experimental groups. Compared with normoglycemic rats, iAKI in diabetic animals caused more profound reductions in V, UNaV, and GFR. Tempol and TVP1022 treatment increased GFR two- and four-fold in diabetic ischemic kidney, respectively. Besides hemodynamic perturbations, iAKI markedly increased renal immunoreactive 4-HNE and nitrotyrosine staining in both diabetic and nondiabetic rats. Moreover, iAKI increased medullary necrosis, congestion, and casts. Noteworthy, these increases were to a larger extent in ischemic diabetic kidneys. TVP1022, and to a lesser extent tempol, decreased nitrotyrosine and 4-HNE immunoreactivities and necrosis and cast formation in the renal medulla. TVP1022 treatment improves renal dysfunction and histological changes in an iAKI diabetic model and suggests a role for TVP1022 therapy in kidney injury.
Collapse
Affiliation(s)
- Niroz Abu-Saleh
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Hoda Awad
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Mogher Khamaisi
- Institute of Endocrinology, Diabetes, and Metabolism and Internal Medicine C, Technion, IIT, Haifa, Israel
| | - Zaher Armaly
- Nephrology Department, EMMS Nazareth-The Nazareth Hospital, Nazareth, Israel
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Campus, Haifa, Israel
| | - Samuel N. Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel; and
| | - Aviva Kaballa
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | - Takaharu Ichimura
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James Holman
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zaid Abassi
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
- Research Unit, Rambam Health Campus, Haifa, Israel
| |
Collapse
|
9
|
Chen YT, Yang CC, Zhen YY, Wallace CG, Yang JL, Sun CK, Tsai TH, Sheu JJ, Chua S, Chang CL, Cho CL, Leu S, Yip HK. Cyclosporine-assisted adipose-derived mesenchymal stem cell therapy to mitigate acute kidney ischemia-reperfusion injury. Stem Cell Res Ther 2013; 4:62. [PMID: 23726287 PMCID: PMC3706768 DOI: 10.1186/scrt212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/20/2013] [Indexed: 01/17/2023] Open
Abstract
Introduction This study tested the hypothesis that cyclosporine (CsA)-supported syngeneic adipose-derived mesenchymal stem cell (ADMSC) therapy offered superior attenuation of acute ischemia–reperfusion (IR) kidney injury to either therapy alone. Methods Adult Sprague–Dawley rats (n = 40) were equally divided into group 1 (sham controls), group 2 (IR injury), group 3 (IR + CsA (20 mg/kg at 1 and 24 hours after procedure)), group 4 (syngeneic ADMSC (1.2×106) at 1, 6 and 24 hours after procedure), and group 5 (IR + CsA-ADMSC). Results By 72 hours after the IR procedure, the creatinine level and the ratio of urine protein to creatinine were highest in group 2 and lowest in group 1, and significantly higher in groups 3 and 4 than in group 5 (all P <0.05 for inter-group comparisons), but showed no differences between groups 3 and 4 (P >0.05). The inflammatory biomarkers at mRNA (matrix metalloproteinase-9, RANTES, TNF-α), protein (TNF-α, NF-κB, intercellular adhesion molecule-1, platelet-derived growth factor), and cellular (CD68+) levels of IR kidney showed a similar pattern compared with that of creatinine in all groups (all P <0.05 for inter-group comparisons). The protein expressions of oxidative stress (oxidized protein), reactive oxygen species (NADPH oxidases NOX-1, NOX-2), apoptosis (Bcl-2–associated X protein, caspase-3 and poly(ADP-ribose) polymerase) and DNA damage (phosphorylated H2A histone family member X-positive, proliferating cell nuclear antigen-positive cells) markers exhibited a pattern similar to that of inflammatory mediators amongst all groups (all P <0.05 for inter-group comparisons). Expressions of antioxidant biomarkers at cellular (glutathione peroxidase, glutathione reductase, heme oxygenase-1 (HO-1)) and protein (NADPH dehydrogenase (quinone)-1, HO-1, endothelial nitric oxide synthase) levels, and endothelial progenitor cell markers (C-X-C chemokine receptor type 4-positive, stromal cell-derived factor-1α-positive) were lowest in groups 1 and 2, higher in groups 3 and 4, and highest in group 5 (all P <0.05 for inter-group comparisons). Conclusion Combination therapy using CsA plus ADMSCs offers improved protection against acute IR kidney injury.
Collapse
|
10
|
Basile DP, Dwinell MR, Wang SJ, Shames BD, Donohoe DL, Chen S, Sreedharan R, Van Why SK. Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney Int 2012; 83:242-50. [PMID: 23235564 PMCID: PMC3561482 DOI: 10.1038/ki.2012.391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 minutes of ischemia and 24 hours reperfusion of 4.1 and 1.3 mg/dl in SS and in BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7BN, SS-XBN, SS-8BN, SS-4BN, SS-15BN, SS-3BN, SS-10BN, SS-6BN, and SS-5BN) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the rat genome database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet to be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Eirin A, Li Z, Zhang X, Krier JD, Woollard JR, Zhu XY, Tang H, Herrmann SM, Lerman A, Textor SC, Lerman LO. A mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis. Hypertension 2012; 60:1242-9. [PMID: 23045468 DOI: 10.1161/hypertensionaha.112.199919] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Revascularization improves blood pressure but not renal function in most patients with atherosclerotic renal artery stenosis (ARAS), possibly related to injury incurred during renal reperfusion. Bendavia, a novel tetrapeptide that inhibits mitochondrial permeability transition pore opening, reduces apoptosis, oxidative stress, and ischemia-reperfusion injury in experimental models. However, its potential for improving renal response to revascularization of chronic ARAS is unknown. We hypothesized that adjunct Bendavia would improve renal structure and function after percutaneous transluminal renal angioplasty (PTRA). Pigs were treated after 6 weeks of ARAS or control with PTRA+stenting (or sham), adjunct continuous 4-hour infusion of Bendavia (0.05 mg/kg IV) or vehicle (n=7 each) during PTRA. Single-kidney renal blood flow and glomerular filtration rate were studied 4 weeks later and renal mitochondrial biogenesis, microvascular architecture, and injurious pathways evaluated ex vivo. Monocyte chemoattractant protein-1 levels rose after PTRA, suggesting inflammatory injury. Bendavia did not immediately affect inflammatory cytokine levels, yet 4 weeks later, stenotic kidney renal blood flow and glomerular filtration rate both improved (44.00 ± 0.21% and 36.40 ± 10.21%, respectively) in ARAS+PTRA+Bendavia compared with ARAS+PTRA+vehicle. Renal mitochondrial biogenesis was restored after PTRA+Bendavia, and microvascular rarefaction, apoptosis, oxidative stress, tubular injury, and fibrosis decreased. Infusion of Bendavia during PTRA preserved mitochondrial biogenesis, renal hemodynamics, and function, and attenuated tissue injury in swine ARAS. Thus, functional mitochondrial injury during renal reperfusion may sustain renal inflammatory injury and limit kidney recovery after PTRA. Potent antiapoptotic and antioxidant effects provide Bendavia a novel therapeutic potential for improving kidney outcomes after PTRA in experimental ARAS.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yoshitomi T, Hirayama A, Nagasaki Y. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials 2011; 32:8021-8. [DOI: 10.1016/j.biomaterials.2011.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 07/05/2011] [Indexed: 12/19/2022]
|
13
|
Hu H, Batteux F, Chéreau C, Kavian N, Marut W, Gobeaux C, Borderie D, Dinh-Xuan AT, Weill B, Nicco C. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol 2011; 225:265-75. [DOI: 10.1002/path.2916] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
|
14
|
Gemici B, Tan R, Öngüt G, Nimet İzgüt-Uysal V. Expressions of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in Gastric Ischemia-Reperfusion: Role of Angiotensin II. J Surg Res 2010; 161:126-33. [DOI: 10.1016/j.jss.2009.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 07/09/2009] [Accepted: 07/12/2009] [Indexed: 12/20/2022]
|
15
|
Viñas JL, Sola A, Jung M, Mastora C, Vinuesa E, Pi F, Hotter G. Inhibitory action of Wnt target gene osteopontin on mitochondrial cytochrome c release determines renal ischemic resistance. Am J Physiol Renal Physiol 2010; 299:F234-42. [PMID: 20392802 DOI: 10.1152/ajprenal.00687.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Certain determinants of ischemic resistance in the Brown Norway rat strain have been proposed, but no studies to date have focused on the role of the Wnt pathway in the ischemic resistance mechanism. We performed a comparative genomic study in Brown Norway vs. Sprague-Dawley rats. Selective manipulations of the Wnt pathway in vivo and in vitro allowed us to study whether the action of the Wnt pathway on apoptosis through the regulation of osteopontin was critical to the maintenance of inherent ischemic resistance mechanisms. The results revealed a major gene upregulation of the Wnt family in Brown Norway rats after renal ischemia-reperfusion. Manipulation of the Wnt signaling cascade by selective antibodies increased mitochondrial cytochrome c release and caspase 3 activity. The antiapoptotic role of Wnt was mediated by osteopontin, a direct Wnt target gene. Osteopontin was reduced by Wnt antibody administration in vivo, and osteopontin gene silencing in vitro significantly increased mitochondrial cytochrome c release. The overexpression of Wnt pathway genes detected in Brown Norway rats is critical in the maintenance of their inherent ischemic resistance. Activation of the Wnt signaling cascade reduces mitochondrial cytochrome c release and caspase 3 activity through the action of osteopontin.
Collapse
Affiliation(s)
- Jose Luis Viñas
- Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hosseini F, Naseri MKG, Badavi M, Ghaffari MA, Shahbazian H, Rashidi I. Effect of beta carotene on lipid peroxidation and antioxidant status following renal ischemia/reperfusion injury in rat. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:259-63. [DOI: 10.3109/00365511003777810] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Differential resolution of inflammation and recovery after renal ischemia-reperfusion injury in Brown Norway compared with Sprague Dawley rats. Kidney Int 2010; 77:781-93. [PMID: 20164827 DOI: 10.1038/ki.2010.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To investigate mechanisms conferring susceptibility or resistance to renal ischemia, we used two rat strains known to exhibit different responses to ischemia-reperfusion. We exposed proximal tubule cells isolated from Sprague Dawley or Brown Norway rats, to a protocol of hypoxia, followed by reoxygenation in vitro. The cells isolated from both rat strains exhibited comparable responses in the disruption of intercellular adhesions and cytoskeletal damage. In vivo, after 24 h of reperfusion, both strains showed similar degrees of injury. However, after 7 days of reperfusion, renal function and tubular structure almost completely recovered and inflammation resolved, but only in Brown Norway rats. Hypoxia-inducible factor-dependent gene expression, ERK1/2, and Akt activation were different in the two strains. Inflammatory mediators MCP-1, IL-10, INF-gamma, IL-1beta, and TNF-alpha were similarly induced at 24 h in both strains but were downregulated earlier in Brown Norway rats, which correlated with shorter NFkappaB activation in the kidney. Moreover, VLA-4 expression in peripheral blood lymphocytes and VCAM-1 expression in kidney tissues were initially similar at 24 h but reached basal levels earlier in Brown Norway rats. The faster resolution of inflammation in Brown Norway rats suggests that this strain might be a useful experimental model to determine the mechanisms that promote repair of renal ischemia-reperfusion injury.
Collapse
|
18
|
Hosseini F, Naseri MKG, Badavi M, Ghaffari MA, Shahbazian H, Rashidi I. Protective effect of beta carotene pretreatment on renal ischemia/reperfusion injury in rat. Pak J Biol Sci 2010; 12:1140-5. [PMID: 19899325 DOI: 10.3923/pjbs.2009.1140.1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Renal ischemia/reperfusion injury is a major cause of acute renal failure. The production of free radicals and reactive oxygen species are important factors contributing to ischemia/reperfusion injury. Thus, scavenging of the excess free radicals can be an important therapeutic approach. The present study examined the protective effect of beta carotene against renal ischemia/reperfusion injury in rat. Male adult Wistar rats (250-300 g) were exposed to 45 min of renal ischemia followed by 4 h of reperfusion. Beta carotene (10, 30 and 100 mg kg(-1)) or vehicle was administered for 5 days prior to ischemia. Renal function was assessed by plasma and urinary analysis. Present results showed that ischemia/reperfusion injury increased (p < 0.05-p < 0.001) serum urea and creatinine levels, as well as urinary excretion of protein and calcium and fractional excretion of sodium, while decreased glomerular filtration rate and potassium excretion. However, alterations in these biochemical indices due to ischemia/reperfusion injury were attenuated by beta carotene pretreatment (p < 0.05-p < 0.001), although not by all doses. Since, beta carotene administration improved renal function, it seems that beta carotene protects renal tissue against ischemia/reperfusion-induced oxidative damage.
Collapse
Affiliation(s)
- F Hosseini
- Physiology Research Center, Department of Physiology, School of Medicine, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V. MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. Am J Physiol Renal Physiol 2008; 296:F266-76. [PMID: 19091787 DOI: 10.1152/ajprenal.90533.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and apoptosis are important factors in the etiology of renal ischemia-reperfusion (I/R) injury. The present study tested the hypothesis that the cell-permeant SOD mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) protects the kidney from I/R-mediated oxidative stress and apoptosis in vivo. Male Sprague-Dawley rats (175-220 g) underwent renal I/R by bilateral clamping of the renal arteries for 45 min followed by reperfusion for 24 h. To examine the role of reactive oxygen species (ROS) in renal I/R injury, a subset of animals were treated with either saline vehicle (I/R Veh) or MnTMPyP (I/R Mn) (5 mg/kg ip) 30 min before and 6 h after surgery. MnTMPyP significantly attenuated the I/R-mediated increase in serum creatinine levels and decreased tubular epithelial cell damage following I/R. MnTMPyP also decreased TNF-alpha levels, gp(91phox), and lipid peroxidation after I/R. Furthermore, MnTMPyP inhibited the I/R-mediated increase in apoptosis and caspase-3 activation. Interestingly, although MnTMPyP did not increase expression of the antiapoptotic protein Bcl-2, it decreased the expression of the proapoptotic genes Bax and FasL. These results suggest that MnTMPyP is effective in reducing apoptosis associated with renal I/R injury and that multiple signaling mechanisms are involved in ROS-mediated cell death following renal I/R injury.
Collapse
Affiliation(s)
- Huan Ling Liang
- Division of Transplant Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
20
|
Butin-Israeli V, Uzi D, Abd-El-Latif M, Pizov G, Eden A, Haviv YS, Oppenheim A. DNA-free recombinant SV40 capsids protect mice from acute renal failure by inducing stress response, survival pathway and apoptotic arrest. PLoS One 2008; 3:e2998. [PMID: 18714386 PMCID: PMC2515219 DOI: 10.1371/journal.pone.0002998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023] Open
Abstract
Viruses induce signaling and host defense during infection. Employing these natural trigger mechanisms to combat organ or tissue failure is hampered by harmful effects of most viruses. Here we demonstrate that SV40 empty capsids (Virus Like Particles-VLPs), with no DNA, induce host Hsp/c70 and Akt-1 survival pathways, key players in cellular survival mechanisms. We postulated that this signaling might protect against organ damage in vivo. Acute kidney injury (AKI) was chosen as target. AKI is critical, prevalent disorder in humans, caused by nephrotoxic agents, sepsis or ischemia, via apoptosis/necrosis of renal tubular cells, with high morbidity and mortality. Systemic administration of VLPs activated Akt-1 and upregulated Hsp/c70 in vivo. Experiments in mercury-induced AKI mouse model demonstrated that apoptosis, oxidative stress and toxic renal failure were significantly attenuated by pretreatment with capsids prior to the mercury insult. Survival rate increased from 12% to >60%, with wide dose response. This study demonstrates that SV40 VLPs, devoid of DNA, may potentially be used as prophylactic agent for AKI. We anticipate that these finding may be projected to a wide range of organ failure, using empty capsids of SV40 as well as other viruses.
Collapse
Affiliation(s)
| | - Dotan Uzi
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mahmoud Abd-El-Latif
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Galina Pizov
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arieh Eden
- Department of Anesthesiology and Critical Care Medicine, Carmel Lady Davis Medical Center, Haifa, Israel
| | - Yosef S. Haviv
- Department of Nephrology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ariella Oppenheim
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
21
|
Pieper GM, Nilakantan V, Nguyen TK, Hilton G, Roza AM, Johnson CP. Reactive oxygen and reactive nitrogen as signaling molecules for caspase 3 activation in acute cardiac transplant rejection. Antioxid Redox Signal 2008; 10:1031-40. [PMID: 18327972 PMCID: PMC2424137 DOI: 10.1089/ars.2007.1867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Apoptosis is a significant factor in cardiac dysfunction and graft failure in cardiac rejection. In this study, we examined potential signaling molecules responsible for caspase 3 activation in a model of acute cardiac allograft rejection. The roles of reactive oxygen species (ROS) and nitric oxide (NO) were determined in untreated allografts and allograft recipients treated with either cyclosporine (CsA), alpha-phenyl-t-butylnitrone (PBN, a spin-trapping agent), vitamin C (VitC), Mn(III)tetrakis (1-methyl-4-pyridyl)porphyrin); MnTmPyP, a superoxide dismutase (SOD) mimetic), or L-(1-iminoethyl)lysine) (L-NIL), an inhibitor of inducible NO synthase (iNOS) enzyme activity. Graft tissue was taken for measuring superoxide radical production, Western blotting, and direct measurement of caspase 3 activity. Activation of caspase 3 in untreated allografts was revealed by the appearance of cleaved caspase 3 from pro-caspase 3 by Western blotting and functional caspase 3 catalytic activity. CsA or PBN inhibited iNOS expression and caspase 3 activity. VitC and MnTmPyP did not alter iNOS expression or decrease NO levels but did inhibit caspase 3 activity. In contrast, L-NIL completely inhibited the increase in NO production without altering iNOS expression and inhibited caspase 3 activity. The prevention of TUNEL staining by MnTmPyP and L-NIL confirmed downstream effects of superoxide and NO on apoptosis. These studies indicate that both superoxide and NO (precursors of peroxynitrite formation) play a significant role in caspase 3 activation in cardiac allograft rejection.
Collapse
Affiliation(s)
- Galen M Pieper
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|