1
|
Chen Y, Wei D, Zhao J, Xu X, Chen J. Reduction of hyperoxic acute lung injury in mice by Formononetin. PLoS One 2021; 16:e0245050. [PMID: 33411783 PMCID: PMC7790402 DOI: 10.1371/journal.pone.0245050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/18/2020] [Indexed: 01/26/2023] Open
Abstract
Background The antioxidant and anti-inflammatory features of Formononetin, an isoflavone constituent extracted from traditional Chinese medicine, have been reported. The present study investigated that whether Formononetin plays a benefit on hyperoxic ALI. Methods C57BL/6 mice were exposed to hyperoxia for 72 h to produce experimental hyperoxic ALI model. Formononetin or vehicle was administrated intraperitoneally. Samples from the lung were collected at 72 h post hyperoxia exposure for further study. Pulmonary microvascular endothelial cells isolated from the lung of C57BL/6 mice were used for in vitro study. Results Formononetin pretreatment notably attenuated hyperoxia-induced elevating pulmonary water content, upregulation of proinflammatory cytokine levels and increasing infiltration of neutrophil in the lung. Western blot analyses showed that Formononetin enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) which is a key transcription factor regulating the expression of heme oxygenase-1 (HO-1). Formononetin increased HO-1 expression and activity compared with vehicle-treated animals. Moreover, Formononetin reversed hyperoxia-caused the reduction of M2 macrophage polarization. However, pretreatment of a HO-1 inhibitor reduced the protective effect of Formononetin on hyperoxic ALI. Cell study showed that the Formononetin-induced upregulation of HO-1 was abolished when the Nrf2 was silenced. Conclusions Formononetin pretreatment reduces hyperoxia-induced ALI via Nrf2/HO-1-mediated antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yin Chen
- Department of Thoracic Surgery, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dong Wei
- Department of Thoracic Surgery, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jin Zhao
- Department of Thoracic Surgery, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiangnan Xu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingyu Chen
- Department of Thoracic Surgery, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
2
|
Magalhaes GS, Rodrigues-Machado MDG, Motta-Santos D, Campagnole-Santos MJ, Santos RAS. Activation of Ang-(1-7)/Mas Receptor Is a Possible Strategy to Treat Coronavirus (SARS-CoV-2) Infection. Front Physiol 2020; 11:730. [PMID: 32636762 PMCID: PMC7318839 DOI: 10.3389/fphys.2020.00730] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Giselle Santos Magalhaes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil.,Medical Sciences Faculty of Minas Gerais, Post-graduate Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Daisy Motta-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Robson A Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Li Z, Hu J, Guo J, Fan L, Wang S, Dou N, Zuo J, Yu S. SSeCKS/Gravin/AKAP12 Inhibits PKCζ-Mediated Reduction of ERK5 Transactivation to Prevent Endotoxin-Induced Vascular dysfunction. Cardiovasc Toxicol 2020; 19:372-381. [PMID: 30805771 DOI: 10.1007/s12012-018-09502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SSeCKS/Gravin/AKAP12 is a protein kinase C (PKC) substrate that inhibits the activity of PKC through binding with it. SSeCKS is expressed in vascular endothelial cells (ECs). The atypical PKC isoform ζ (PKCζ) is a pathologic mediator of endothelial dysfunction. However, the functional significance of SSeCKS/PKCζ dimerization in the vascular endothelium remains poorly understood. Given this background, we investigated the effects of SSeCKS on endothelial dysfunction and elucidated the possible mechanism involved. Vascular endothelial dysfunction and inflammatory changes were induced by treatment with bacterial endotoxin lipopolysaccharide (LPS, a vascular endothelial toxicity inducer). LPS can increase the level of SSeCKS. However, we also found that depletion of SSeCKS aggravated the LPS-induced vascular endothelial dysfunction, upregulated pro-inflammatory proteins and phosphorylation level of PKCζ, increased ROS formation, decreased extracellular-signal-regulated kinase 5 (ERK5) transcriptional activity, and reduced eNOS expression. Further examination revealed that depletion of SSeCKS increased PKCζ/ERK5 dimerization. These findings provide preliminary evidence that the expression of SSeCKS induced by LPS, as a negative feedback mechanism, has the potential to improve endothelium-dependent relaxation in vascular disease conditions by inhibiting PKCζ-mediated reduction of ERK5 transactivation.
Collapse
Affiliation(s)
- Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jing Hu
- Department of Pharmacy, General Hospital of Lanzhou Command, PLA, Lanzhou, 730050, China
| | - Jian Guo
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Li Fan
- Outpatient Department, PLA, Unit 32058, Chengdu, 610100, China
| | - Shaowei Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Ning Dou
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jian Zuo
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
4
|
Attenuation of hyperoxic acute lung injury by Lycium barbarum polysaccharide via inhibiting NLRP3 inflammasome. Arch Pharm Res 2019; 42:902-908. [PMID: 31388826 DOI: 10.1007/s12272-019-01175-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
Lycium barbarum polysaccharide (LBP), an active component from Goji berry which is a traditional Chinese medicine, has anti-inflammatory and antioxidant features. The aim of our study was to investigate whether LBP has any role in hyperoxia-induced acute lung injury (ALI). Using a murine model of hyperoxia-induced ALI, we investigate the effect of LBP on pulmonary pathological changes as well as Sirtuin 1 (SIRT1) and the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. Exposure to 100% oxygen for 72 h in male C57BL/6 mice resulted in increased protein levels of tumor necrosis factor-α and interleukin-1β in lung tissues, and aggravated lung histological alterations. These hyperoxia-induced changes and mortality were improved by LBP. LBP markedly suppressed the activation of NLRP3 inflammasome both in vivo and in vitro. Moreover, LBP upregulated SIRT1 expression compared with vehicle-treated group. Importantly, knockdown of SIRT1 reversed the inhibitory effect of LBP on NLRP3 inflammasome activation in vitro. LBP meliorated hyperoxia-induced ALI in mice by SIRT1-dependent inhibition of NLRP3 inflammasome activation.
Collapse
|
5
|
Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed Pharmacother 2019; 111:733-739. [PMID: 30611998 DOI: 10.1016/j.biopha.2018.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The disruption of the balance between antioxidants and oxidants plays a vital role in the pathogenesis of acute lung injury (ALI). Evidence has shown that Lycium barbarum polysaccharide (LBP) has antioxidant feature. We examined the efficacy and mechanisms of LBP on hyperoxia-induced acute lung injury (ALI) in the present study. MATERIALS AND METHODS C57BL/6 wild-type (WT) mice and nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2-/-) mice were used in the present study. LBP was fed by gavages once daily for 1 week. Then, the mice were exposed to hyperoxia or room air for 72 h. Additional dosage of LBP was given per 24 h. RESULTS Reactive oxygen species production was increased in WT mice exposed to hyperoxia. Inflammatory cytokines including interleukin (IL)-1β as well as IL-6, and inflammatory cells were increased infiltration in the lung after 3 days hyperoxia exposure. Hyperoxia exposure also induced pulmonary edema and histopathological changes. These hyperoxia-induced changes were improved in LBP treated group. Moreover, elevated activities of heme oxygenase-1 and glutathione peroxidase and enhanced activation of Nrf2 were observed in mice treated with LBP. However, the benefit of LBP on hyperoxic ALI was abolished in Nrf2-/- mice. Moreover, our cell study showed that the LBP-induced activation of Nrf2 was dampened in pulmonary microvascular endothelial cells when the AMPK signal was inhibited by siRNA. CONCLUSIONS LBP improves hyperoxic ALI via Nrf2-dependent manner. The LBP-induced activation of Nrf2 is mediated, at least in part, by AMPK pathway.
Collapse
|
6
|
Wu D, Wang Y, Zhang H, Du M, Li T. Acacetin attenuates mice endotoxin-induced acute lung injury via augmentation of heme oxygenase-1 activity. Inflammopharmacology 2017; 26:635-643. [PMID: 28988328 DOI: 10.1007/s10787-017-0398-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/17/2022]
Abstract
Acacetin, a natural product, has a wide spectrum of biological activities such as antioxidant properties. In the present study, we examined whether Acacetin has any beneficial role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and, if so, whether its effect is mediated via heme oxygenase-1 (HO-1), an antioxidant enzyme playing an important role in ALI. Male BALB/c mice were stimulated with LPS intratracheal instillation to induce ALI. Acacetin was administrated 2 h after LPS challenge. Samples were harvested 10 h after LPS administration. We demonstrated that LPS challenge significantly induced lung histological alterations such as inflammation and edema. Acacetin administration notably attenuated these changes and reduced tumor necrosis factor-α and interleukin-1β in lung tissues. The LPS-induced reactive oxygen species generation was markedly suppressed by Acacetin. Furthermore, Acacetin treatment significantly elevated pulmonary HO-1 and nuclear factor erythroid-2-related factor 2 (Nrf2) activities. However, the beneficial action of Acacetin was markedly abolished when pretreated with zinc protoporphyrin, an inhibitor of HO-1. In in vitro studies, Acacetin notably increased the HO-1 expression in pulmonary microvascular endothelial cells. During knockdown of Nrf2 by siRNA, the effect of Acacetin on HO-1 expression was significantly reversed. Acacetin attenuates LPS-induced ALI in mice. This protective effect of Acacetin may be mediated, in part, through an HO-1-dependent pathway.
Collapse
Affiliation(s)
- Dongdong Wu
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yanan Wang
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Heng Zhang
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Minghua Du
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Tanshi Li
- Emergency Department, General Hospital of Chinese People's Liberation Army, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Tian K, Wang Y, Zhang R, Shang J, Jiang W, Wang A. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome. Int J Mol Sci 2016; 17:ijms17071183. [PMID: 27455237 PMCID: PMC4964552 DOI: 10.3390/ijms17071183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Kun Tian
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Yan Wang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Rong Zhang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Jiawei Shang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Wei Jiang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
8
|
Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock 2016; 43:395-404. [PMID: 25768373 DOI: 10.1097/shk.0000000000000302] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activation of the renin-angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin II [Ang II] and angiotensin-converting enzyme 2 [ACE2]/Ang-1-7) has been implicated in the pathophysiology of inflammatory response and acute lung injury (ALI). Previous studies have shown that the ACE inhibitor captopril (Cap) may be a potent therapeutic drug for ALI. However, the mechanisms of its protective effects on ALI are still largely unknown. In this study, we evaluated the effects of Cap on preventing lipopolysaccharide (LPS)-induced lung injury and further investigated the underlying mechanisms of these protective effects. Rats were intraperitoneally pretreated with Cap (50 mg/kg) 30 min prior to an intravenous administration of LPS (7.5 mg/kg). Furthermore, following a 30-min pretreatment with Cap (10 mol/mL) or combined with the ACE2 inhibitor MLN4760 (10 mol/mL), rat pulmonary microvascular endothelial cells (PMVECs) were stimulated with LPS (1 mg/mL). Captopril pretreatment significantly attenuated LPS-induced pathophysiological changes in the lung, inhibited secretion of tumor necrosis factor α and interleukin 6, reduced the ratio of Ang II to Ang-1-7, and reversed the increased ratio of ACE to ACE2, which was remarkably decreased from 7.07 (LPS only) to 1.71 (LPS + Cap). The protective effects of Cap on ALI were also confirmed by in vitro studies, in which Cap suppressed LPS-induced secretion of proinflammatory cytokines and modulated the expression levels of ACE and ACE2. After Cap pretreatment, the ratio of ACE to ACE2 expression was remarkably decreased from 5.18 (LPS alone) to 1.52 (LPS + Cap). Furthermore, Cap given before LPS administration led to inhibition of p38 mitogen-activated protein kinase (MAPK), ERK (extracellular signal-regulated kinase) 1/2, and JNK (c-Jun N-terminal kinase) phosphorylation in PMVECs, whereas MLN4760 abolished the protective effects of Cap on LPS-induced secretion of proinflammatory cytokines and abolished Cap-induced blockade of p38MAPK, ERK1/2, and JNK phosphorylation. Our findings reveal that Cap exerts protective effects on LPS-induced lung injury and the cytotoxicity of PMVECs, and these effects may, at least in part, regulate the balance of ACE and ACE2 expression and inhibit the activation of MAPKs.
Collapse
|
9
|
Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells. Apoptosis 2015; 21:69-84. [DOI: 10.1007/s10495-015-1184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep 2015; 5:8209. [PMID: 25644821 PMCID: PMC4314638 DOI: 10.1038/srep08209] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/13/2015] [Indexed: 01/01/2023] Open
Abstract
ACE2 and Ang–(1–7) have important roles in preventing acute lung injury. However, it is not clear whether upregulation of the ACE2/Ang–(1–7)/Mas axis prevents LPS–induced injury in pulmonary microvascular endothelial cells (PMVECs) by inhibiting the MAPKs/NF–κB pathways. Primary cultured rat PMVECs were transduced with lentiviral–borne Ace2 or shRNA–Ace2, and then treated or not with Mas receptor blocker (A779) before exposure to LPS. LPS stimulation resulted in the higher levels of AngII, Ang–(1–7), cytokine secretion, and apoptosis rates, and the lower ACE2/ACE ratio. Ace2 reversed the ACE2/ACE imbalance and increased Ang–(1–7) levels, thus reducing LPS–induced apoptosis and inflammation, while inhibition of Ace2 reversed all these effects. A779 abolished these protective effects of Ace2. LPS treatment was associated with activation of the ERK, p38, JNK, and NF–κB pathways, which were aggravated by A779. Pretreatment with A779 prevented the Ace2–induced blockade of p38, JNK, and NF–κB phosphorylation. However, only JNK inhibitor markedly reduced apoptosis and cytokine secretion in PMVECs with Ace2 deletion and A779 pretreatment. These results suggest that the ACE2/Ang–(1–7)/Mas axis has a crucial role in preventing LPS–induced apoptosis and inflammation of PMVECs, by inhibiting the JNK/NF–κB pathways.
Collapse
|
11
|
Wang Y, Chen H, Li H, Zhang J, Gao Y. Effect of angiopoietin-like protein 4 on rat pulmonary microvascular endothelial cells exposed to LPS. Int J Mol Med 2013; 32:568-76. [PMID: 23783408 PMCID: PMC3782553 DOI: 10.3892/ijmm.2013.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/13/2013] [Indexed: 11/06/2022] Open
Abstract
Pulmonary microvascular endothelial cells (PMVECs) possess highly proliferative and angiogenic capacities and are localized at the critical interface between the blood and microvessel wall; they are the primary targets of inflammatory cytokines during lung inflammation. Angiopoietin-like protein 4 (Angptl4) is a circulating protein that has recently been im-plicated in the regulation of angiogenesis and metastasis. This study aimed to investigate the effect of Angptl4 on rat PMVECs (RPMVECs) exposed to lipopolysaccharide (LPS). The cell culture was stimulated with LPS. Total Angptl4 cDNA was obtained from Source BioScience. The PCR product was cloned into the pcDNA3.1-eGFP or the pcDNA3.1‑eGFP‑Angptl4 vector, which were then transfected into the RPMVECs using SuperFect transfection reagent. The Angptl4 mRNA levels, protein levels and cell morphology of the RPMVECs in the experimental groups were detected using real time-PCR, western blot analysis, MTT assay, ELISA and confocal microscopy methods, respective-ly. The Angptl4 expression vector, pcDNA3.1‑eGFP-Angptl4, was successfully constructed. The Angptl4 mRNA level in the LPS-pcDNA3.1-eGFP-transfected group (blank control) was slightly increased and was significantly higher in the experimental group compared with the empty vector and blank control group with significant differences. Pro-apoptotic caspase-8, -9 and Bax protein were inhibited, while p-AKT/AKT and p-Mek1/2 protein expression was also decreased. The rosiglitazone group had significantly decreased levels of the inflammatory cytokine, tumor necrosis factor (TNF)-α (P<0.01). The overexpression of Angptl4 inhibited the LPS-induced increase in the permeability of the RPMVECs, which was associated with the depolymerization of central F-actin in the RPMVECs. In conclusion, our study demonstrates that the overexpression of Angptl4 exerts protective, anti-inflammatory and anti-angiogenic effects. It re-presents a novel therapeutic target gene for the treatment of acute lung injury induced by LPS.
Collapse
Affiliation(s)
- Yuxi Wang
- Dalian Medical University, Dalian, Liaoning, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Involvement of SRC-suppressed C kinase substrate in neuronal death caused by the lipopolysaccharide-induced reactive astrogliosis. Inflammation 2011; 33:359-73. [PMID: 20204485 DOI: 10.1007/s10753-010-9194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Src-suppressed C kinase substrate (SSeCKS), a protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein, regulating the inflammatory process. In the process of spinal inflammatory diseases by LPS intraspinal injection, expression of SSeCKS in the spinal cord was increased, mainly in active astrocytes and neurons. Induced SSeCKS was colabeled with terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (an apoptosis maker) in the late inflammation processes. These results indicated that SSeCKS might correlate with the inflammatory reaction and late neurodegeneration after LPS injection. A cell type-specific action for SSeCKS was further studied within C6 cells and PC12 cells. Knockdown of SSeCKS by small-interfering RNAs (siRNAs) blocked the LPS-induced inducible nitric oxide synthase (iNOS) expression in C6 cells, while overexpression SSeCKS enhanced iNOS expression. SSeCKS is also participated in regulation of PC12 cell viability. Loss of SSeCKS rescued PC12 cell viability, and excessive SSeCKS exacerbated the cell death upon conditioned medium and tumor necrosis factor-alpha exposure. This study delineates that SSeCKS may be important for host defenses in spinal inflammation and suggests a valuable molecular mechanism by which astrocytes modify neuronal viability during pathological states.
Collapse
|
13
|
Role of src-suppressed C kinase substrate in rat pulmonary microvascular endothelial hyperpermeability stimulated by inflammatory cytokines. Inflamm Res 2010; 59:949-58. [PMID: 20454828 DOI: 10.1007/s00011-010-0207-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 04/04/2010] [Accepted: 04/21/2010] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The aim of the study was to investigate the role of src-suppressed C kinase substrate (SSeCKS) in the modulation of rat pulmonary microvascular endothelial cells (RPMVEC) permeability elicited by interleukin (IL)-1β and tumor necrosis factor (TNF)-α. METHODS The gene expression of SSeCKS was analyzed by reverse transcription-polymerase chain reaction. Immunoblotting was used to determine the SSeCKS protein expression and the activation of the protein kinase C (PKC) signaling pathway. A RPMVEC monolayer was constructed to determine changes of transendothelial electrical resistance (TER) and FITC-dextran flux (P (d)) across the monolayer. SSeCKS-specific small interfering RNA was transfected into RPMVEC. RESULTS IL-1β and TNF-α activated the PKC signaling pathway in RPMVEC, and up-regulated the gene and protein expression of SSeCKS. Depletion of endogenous SSeCKS in RPMVEC significantly attenuated cytokine-induced decrease in TER and increase in P (d), but not to the basal levels. PKC inhibitors also significantly decreased cytokine-induced hyperpermeability and SSeCKS expression. CONCLUSIONS SSeCKS is involved in the endothelial hyperpermeability induced by IL-1β and TNF-α in inflammatory process.
Collapse
|
14
|
You QH, Sun GY, Wang N, Shen JL, Wang Y. Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway. J Surg Res 2009; 162:110-21. [PMID: 19577259 DOI: 10.1016/j.jss.2009.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/06/2009] [Accepted: 01/13/2009] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-17F is involved in lung inflammation, but the effect of IL-17F on endothelial permeability and its signaling pathway remain ill-defined. The current study sought to investigate the effect of IL-17F on endothelium and assess the role of protein kinase C (PKC) and src-suppressed C kinase substrate (SSeCKS) in this process. METHODS Rat pulmonary microvascular endothelial monolayers were constructed to determine changes of permeability as measured by means of FITC-dextran and Hank's solution flux across monolayers and transendothelial electrical resistance with or without IL-17F and PKC inhibitors. Additional monolayers were stained using FITC-phalloidin for filamentous actin (F-actin). The gene expression of SSeCKS was analyzed by the reverse transcription-polymerase chains. Alterations of SSeCKS protein were investigated by immunoblotting and immunoprecipitation. RESULTS IL-17F increased endothelial monolayer permeability in a dose- and time-dependent manner. F-actin staining revealed that permeability changes were accompanied by reorganization of cytoskeleton. In the presence of PKC inhibitors, the IL-17F-induced hyperpermeability and reorganization of F-actin were attenuated. The gene and protein expression of SSeCKS were conspicuously elevated after IL-17F challenge. The process of SSeCKS phosphorylation followed a time course that mirrored the time course of hyperpermeability induced by IL-17F. IL-17F-induced SSeCKS phosphorylation was abrogated after PKC inhibitors pretreatment. The translocation of SSeCKS from the cytosol to the membrane and a significant increase in the SSeCKS association with the cytoskeleton were found after IL-17F treatment. CONCLUSIONS IL-17F is an important mediator of increased endothelial permeability. PKC and SSeCKS are integral signaling components essential for IL-17F-induced hyperpermeability.
Collapse
Affiliation(s)
- Qing-hai You
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | | | | | | | | |
Collapse
|