1
|
Singh J, Khanduja KL, Dahiya D, Avti PK. Mechanistic Regulation of Epidermal Growth Factor and Hormonal Receptors by Kinase Inhibitors and Organofluorines in Breast Cancer Therapy. Cell Biochem Biophys 2024:10.1007/s12013-024-01546-9. [PMID: 39316263 DOI: 10.1007/s12013-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC50 of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Krishan Lal Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of Surgery, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India.
| |
Collapse
|
2
|
Singh J, Khanduja KL, Avti PK. Multi-target therapeutic modulation with natural compounds towards DNA repair MRN-checkpoint sensor genes (MRN-CSGs) and oncogenic miRNAs in breast cancer patients: a Clinico-Informatic study. Integr Biol (Camb) 2024; 16:zyae019. [PMID: 39568384 DOI: 10.1093/intbio/zyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Breast cancer, more prevalent in women, often arises due to abnormalities in the MRN-checkpoint sensor genes (MRN-CSG), responsible for DNA damage detection and repair. Abnormality in this complex is due to the suppression of various effectors such as siRNAs, miRNAs, and transcriptional factors responsible for breast tumor progression. This study analyzed breast tumor samples (n = 60) and identified four common miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) out of 12, exploring their interactions with MRN-CSG. The 3D structures of these miRNA-MRN-CSG complexes displayed strong thermodynamic stability. Screening 7711 natural compounds resulted in two natural compounds (F0870-0001 and F0922-0471) with the lowest ligand binding energies (ΔG = -8.4 to-11.6 kcal/mol), targeting two common miRNAs. Docking results showed that one natural compound (PubChem id-5 281 614) bound to all MRN-CSG components (ΔG = -6.2 to -7.3 kcal/mol), while F6782-0723 bound only to RAD50 and NBN. These compounds exhibited minimal dissociation constants (Kd and Ki) and thermodynamically stable minimum free energy (MMGBSA) values. Molecular dynamics simulations indicated highly stable natural compound-MRN-CSG complexes, with consistent RMSD, RMSF, and strong residual correlation. These top-selected compounds displayed robust intermolecular H-bonding, low carcinogenicity, low toxicity, and drug-like properties. Consequently, these compounds hold promise for regulating miRNA and MRN-CSG DNA repair mechanisms in breast cancer therapy. Insight Box: This study investigated breast tumor samples (n = 60) and identified four miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) that interact with MRN-checkpoint sensor genes (MRN-CSG), crucial for DNA damage repair. Screening 7711 natural compounds highlighted two compounds (F0870-0001 and F0922-0471) with the lowest binding energies (ΔG = -8.4 to -11.6 kcal/mol), targeting two common miRNAs (miR-1-3p and miR-34a-5p). Another natural compound (PubChem id-5 281 614, ΔG = -6.2 to -7.3 kcal/mol) bound all MRN-CSG components, while F6782-0723 targeted RAD50 and NBN. These compounds showed strong binding stability, favorable MMGBSA values, and minimal dissociation constants. Molecular dynamics simulations confirmed the stability and drug-like properties of these compounds, indicating their potential in breast cancer therapy by modulating miRNA and MRN-CSG DNA repair mechanisms.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| |
Collapse
|
3
|
Behera C, Kaur Sandha K, Banjare N, Kumar Shukla M, Mudassir Ali S, Singh M, Gupta PN. Biodegradable nanocarrier of gemcitabine and tocopherol succinate synergistically ameliorates anti-proliferative response in MIA PaCa-2 cells. Int J Pharm 2024; 649:123599. [PMID: 37992978 DOI: 10.1016/j.ijpharm.2023.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Gemcitabine (GEM) is an important chemotherapeutic agent used alone or in combination with other anticancer agents for the treatment of various solid tumors. In this study, the potential of a dietary supplement, α-tocopherol succinate (TOS) was investigated in combination with GEM by utilizing human serum albumin-based nanoparticles (HSA NPs). The developed nanoparticles were characterized using DLS, SEM and FTIR and evaluated in a panel of cell lines to inspect cytotoxic efficacy. The ratio metric selected combination of the NPs was further investigated in human pancreatic cancer cell line (MIA PaCa-2 cells) to assess the cellular death mechanism via a myriad of biochemical and bio-analytical assays including nuclear morphometric analysis by DAPI staining, ROS generation, MMP loss, intracellular calcium release, in vitro clonogenic assay, cell migration assay, cell cycle analysis, immunocytochemical staining followed by western blotting, Annexin V-FITC and cellular uptake studies. The desolvation-crosslinking method was used to prepare the NPs. The average size of TOS-HSA NPs and GEM-HSA NPs was found to be 189.47 ± 5 nm and 143.42 ± 7.4 nm, respectively. In combination, the developed nanoparticles exhibited synergism by enhancing cytotoxicity in a fixed molar ratio. The selected combination also significantly triggered ROS generation and mitochondrial destabilization, alleviated cell migration potential and clonogenic cell survival in MIA PaCa-2 cells. Further, cell cycle analysis, Annexin-V FITC assay and caspase-3 activation, up regulation of Bax and down regulation of Bcl-2 protein confirmed the occurrence of apoptotic event coupled with the G0/G1 phase arrest. Nanocarriers based this combination also offered approximately 14-folds dose reduction of GEM. Overall, the combined administration of TOS-HSA NPs and GEM-HSA NPs showed synergistic cytotoxicity accompanied with dose reduction of the gemcitabine. These encouraging findings could have implication in designing micronutrient based-combination therapy with gemcitabine and demands further investigation.
Collapse
Affiliation(s)
- Chittaranjan Behera
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Kamalpreet Kaur Sandha
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Banjare
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monu Kumar Shukla
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Mudassir Ali
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Manisha Singh
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Singh J, Sangwan N, Chauhan A, Sarma P, Prakash A, Medhi B, Avti PK. Screening and identification of phytochemical drug molecules against mutant BRCA1 receptor of breast cancer using computational approaches. Mol Cell Biochem 2022; 477:885-896. [PMID: 35067782 DOI: 10.1007/s11010-021-04338-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The American Cancer Society claims that breast cancer is the second most significant cause of cancer-related death, with over one million women diagnosed each year. Breast cancer linked to the BRCA1 gene has a significant risk of mortality and recurrence and is susceptible to alteration or over-expression, which can lead to hereditary breast cancer. Given the shortage of effective and possibly curative treatments for breast cancer, the present study combined molecular and computational analysis to find prospective phytochemical substances that can suppress the mutant gene (BRCA1) that causes the disease. Virtual screening and Molecular docking approaches are utilized to find probable phytochemicals from the ZINC database. The 3D structure of mutant BRCA1 protein with the id 3PXB was extracted from the NCBI-PDB. Top 10 phytochemical compounds shortlisted based on molecular docking score between - 11.6 and - 13.0. Following the ADMET properties, only three (ZINC000085490903 = - 12.50, ZINC000085490832 = - 12.44, and ZINC000070454071 = - 11.681) of the 10 selected compounds have drug-like properties. The molecular dynamic simulation study of the top three potential phytochemicals showed stabilized RMSD and RMSF values as compared to the APO form of the BRCA1 receptor. Further, trajectory analysis revealed that approximately similar radius of gyration score tends to the compactness of complex structure, and principal component and cross-correlation analysis suggest that the residues move in a strong correlation. Thermostability of the target complex (B-factor) provides information on the stable energy minimized structure. The findings suggest that the top three ligands show potential as breast cancer inhibitors.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India.
| |
Collapse
|
6
|
Behera C, Kour J, Banjare N, Verma PK, Chashoo G, Sawant SD, Gupta PN. Mechanistic investigation of synergistic interaction of tocopherol succinate with a quinoline-based inhibitor of mammalian target of rapamycin. J Pharm Pharmacol 2021; 74:605-617. [PMID: 34468737 DOI: 10.1093/jpp/rgab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/02/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer monotherapy is associated with various limitations; therefore, combination chemotherapy is widely explored for optimum drug efficacy. In this study, 4-(N-Phenyl-N'-substituted benzenesulfonyl)-6-(4-hydroxyphenyl) quinoline-based mammalian target of rapamycin (mTOR) inhibitor (IIIM-4Q) was investigated in combination with tocopherol succinate (TOS), and the mechanism of cytotoxicity was elucidated. METHODS The cytotoxic potential of IIIM-4Q and TOS was evaluated in five cell lines. Further, to understand the mechanism of cytotoxicity of IIIM-4Q, TOS and their combination, various studies including morphological analysis using scanning electron microscopy and 6-diamidino-2-phenylindole (DAPI) staining, estimation of reactive oxygen species (ROS) level, measurement of mitochondrial membrane potential (MMP), in-vitro cell migration assay, Western blotting and staining with acridine orange (AO) for autophagy detection were performed. KEY FINDINGS Investigated combination was synergistic in nature and exhibited greater oxidative stress and mitochondrial dysfunction in pancreatic cancer cells. The migration potential of MIA PaCa-2 cells was significantly mitigated under the influence of this combination, and morphological changes such as chromatin condensation and nuclear blebbing were observed. Also, poly (adenosine diphosphate-ribose) polymerase cleavage and caspase-3 activation were observed in IIIM-4Q and TOS combination-treated cells. CONCLUSIONS The investigated combination synergistically inhibited proliferation of MIA PaCa-2 cells through simultaneous induction of autophagy followed by apoptosis, and this combination demonstrated potential for further translational studies.
Collapse
Affiliation(s)
- Chittaranjan Behera
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nagma Banjare
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Praveen K Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gousia Chashoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Promising antitumor effect of alpha-tocopheryl succinate in human colon and liver cancer cells. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9801-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Ju BG, Kim WS. Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.486940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Enhancement in alpha-tocopherol succinate-induced apoptosis by all-trans-retinoic acid in primary leukemic cells: role of antioxidant defense, Bax and c-myc. Mol Cell Biochem 2008; 319:133-9. [DOI: 10.1007/s11010-008-9886-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022]
|