1
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
2
|
Kodali S, Li M, Budai MM, Chen M, Wang J. Protection of Quiescence and Longevity of IgG Memory B Cells by Mitochondrial Autophagy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1085-1098. [PMID: 35101890 PMCID: PMC8887795 DOI: 10.4049/jimmunol.2100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
The development of long-lived immune memory cells against pathogens is critical for the success of vaccines to establish protection against future infections. However, the mechanisms governing the long-term survival of immune memory cells remain to be elucidated. In this article, we show that the maintenance mitochondrial homeostasis by autophagy is critical for restricting metabolic functions to protect IgG memory B cell survival. Knockout of mitochondrial autophagy genes, Nix and Bnip3, leads to mitochondrial accumulation and increases in oxidative phosphorylation and fatty acid synthesis, resulting in the loss of IgG+ memory B cells in mice. Inhibiting fatty acid synthesis or silencing necroptosis gene Ripk3 rescued Nix-/-Bnip3-/- IgG memory B cells, indicating that mitochondrial autophagy is important for limiting metabolic functions to prevent cell death. Our results suggest a critical role for mitochondrial autophagy in the maintenance of immunological memory by protecting the metabolic quiescence and longevity of memory B cells.
Collapse
Affiliation(s)
- Srikanth Kodali
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Min Li
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marietta M. Budai
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Min Chen
- † Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX; .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; and.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY
| |
Collapse
|
3
|
Xu X, Wang Y, Choi WS, Sun X, Godbout R. Super resolution microscopy reveals DHA-dependent alterations in glioblastoma membrane remodelling and cell migration. NANOSCALE 2021; 13:9706-9722. [PMID: 34018532 DOI: 10.1039/d1nr02128a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain fatty acid binding protein (FABP7; B-FABP) promotes glioblastoma (GBM) cell migration and is associated with tumor infiltration, properties associated with a poor prognosis in GBM patients. FABP7-expressing neural stem-like cells are known to drive tumor migration/infiltration and resistance to treatment. We have previously shown that FABP7's effects on cell migration can be reversed when GBM cells are cultured in medium supplemented with the omega-3 fatty acid, docosahexaenoic acid (DHA). Here, we use super-resolution imaging on patient-derived GBM stem-like cells to examine the importance of FABP7 and its fatty acid ligands in mitigating GBM cell migration. As FABPs are involved in fatty acid transport from membrane to cytosol, we focus on the effect of FABP7 and its ligand DHA on GBM membrane remodeling, as well as FABP7 nanoscale domain formation on GBM membrane. Using quantitative plasma membrane lipid order imaging, we show that FABP7 expression in GBM cells correlates with increased membrane lipid order, with DHA dramatically decreasing lipid order. Using super-resolution stimulated emission depletion (STED) microscopy, we observe non-uniform distribution of FABP7 on the surface of GBM cells, with FABP7 forming punctate nanoscale domains of ∼100 nm in diameter. These nanodomains are particularly enriched at the migrating front of GBM cells. Interestingly, FABP7 nanodomains are disrupted when GBM cells are cultured in DHA-supplemented medium. We demonstrate a tight link between cell migration, a higher membrane lipid order and increased FABP7 nanoscale domains. We propose that DHA-mediated disruption of membrane lipid order and FABP7 nanodomains forms the basis of FABP7/DHA-mediated inhibition of cell migration in GBM.
Collapse
Affiliation(s)
- Xia Xu
- Cross Cancer Institute, University of Alberta, Department of Oncology, 11560 University Avenue, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
4
|
Abstract
Challenges in imaging lipid-processing events in live, intact vertebrate models have historically led to reliance on cultured cell studies, thus hampering our understanding of lipid metabolism and gastrointestinal physiology. Fluorescently-labeled molecules, such as BODIPY-labeled lipids, can reveal lipid-processing events in live zebrafish (Danio rerio) and has expanded our understanding of digestive physiology. This review will cover recent advances from the past two to three years in the use of fluorescence-based imaging techniques in live zebrafish to characterize gastrointestinal physiology in health and disease and to conduct small molecule screens to discover therapeutic compounds.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Dr., Baltimore, MD, 21218, USA
| | | |
Collapse
|
5
|
Teague H, Ross R, Harris M, Mitchell DC, Shaikh SR. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains. J Nutr Biochem 2012; 24:188-95. [PMID: 22841541 DOI: 10.1016/j.jnutbio.2012.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 12/11/2022]
Abstract
Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina University, NC 27834, USA
| | | | | | | | | |
Collapse
|
6
|
Quesada H, Pajuelo D, Fernández-Iglesias A, Díaz S, Ardevol A, Blay M, Salvadó M, Arola L, Blade C. Proanthocyanidins modulate triglyceride secretion by repressing the expression of long chain acyl-CoA synthetases in Caco2 intestinal cells. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.05.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Carten JD, Bradford MK, Farber SA. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol 2011; 360:276-85. [PMID: 21968100 DOI: 10.1016/j.ydbio.2011.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/05/2023]
Abstract
Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebrafish (Danio rerio). The method utilizes egg yolk liposomes to deliver different chain length FA analogs (BODIPY-FL) to six day-old larvae. Following liposome incubation, larvae accumulate the analogs throughout their digestive organs, providing a comprehensive readout of organ structure and physiology. Using this assay we have observed that different chain length FAs are differentially transported and metabolized by the larval digestive system. We show that this assay can also reveal structural and metabolic defects in digestive mutants. Because this labeling technique can be used to investigate digestive organ morphology and function, we foresee its application in diverse studies of organ development and physiology.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- The Johns Hopkins University, Department of Biology, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
8
|
Trevaskis NL, Nguyen G, Scanlon MJ, Porter CJH. Fatty acid binding proteins: potential chaperones of cytosolic drug transport in the enterocyte? Pharm Res 2011; 28:2176-90. [PMID: 21523511 DOI: 10.1007/s11095-011-0446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
Abstract
PURPOSE Several poorly water-soluble drugs have previously been shown to bind to intestinal (I-FABP) and liver fatty acid binding protein (L-FABP) in vitro. The purpose of this study was to examine the potential role of drug binding to FABPs on intestinal permeability and gut wall metabolism in vivo. METHODS The intestinal permeability of ibuprofen, progesterone and midazolam (which bind FABPs) and propranolol (which does not) was examined using an autoperfused recirculating permeability model in control rats and rats where FABP levels were upregulated via pre-feeding a fat-rich diet. RESULTS The intestinal permeability of drugs which bind FABPs in vitro was increased in animals where FABP levels were upregulated by prefeeding a high fat diet. The gut wall metabolism of midazolam was also reduced in animals with elevated FABP levels. CONCLUSIONS Consistent with their role in the cellular transport of endogenous lipophilic substrates, FABPs appear to facilitate the intracellular disposition of drug molecules that bind FABPs in vitro. Drug binding to FABPs in the enterocyte may also attenuate gut wall metabolism in a manner analogous to the reduction in hepatic extraction mediated by drug binding to plasma proteins in the systemic circulation.
Collapse
Affiliation(s)
- Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
9
|
Levy E, Ménard D, Delvin E, Montoudis A, Beaulieu JF, Mailhot G, Dubé N, Sinnett D, Seidman E, Bendayan M. Localization, function and regulation of the two intestinal fatty acid-binding protein types. Histochem Cell Biol 2009; 132:351-67. [PMID: 19499240 DOI: 10.1007/s00418-009-0608-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2009] [Indexed: 01/20/2023]
Abstract
Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, CHU-Sainte-Justine, University of Montreal, 3175 Côte Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|