1
|
Papadopoulos P, Zisis V, Andreadis D, Vahtsevanos K, Poulopoulos A. Investigation of the Vascular-Endothelial Pattern of Expression of DAPK-1 in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders Through Immunohistochemistry. Cureus 2024; 16:e63519. [PMID: 39081443 PMCID: PMC11288380 DOI: 10.7759/cureus.63519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Potentially malignant disorders, like oral lichen planus (OLP) and oral leukoplakia (OL) of several degrees of dysplasia, manifest a significant potential of malignant transformation being a precursor of oral squamous cell carcinoma (OSCC). The role of microvascularization in carcinogenesis is critical; therefore, microvascularization constitutes a major therapeutic target. DAPK-1 constitutes a possible cancer marker, with proven implications in other human cancers, and there isn't any study on its vascular endothelial expression in the oral cavity, particularly in oral cancer and oral potentially malignant diseases. The present study aims to investigate the vascular endothelial expression of the DAPK-1 in paraffin-embedded tissue samples of oral leukoplakia, oral squamous cell carcinoma, and oral lichen planus. Materials and methods The study focuses on the immunohistochemical, vascular-endothelial, expression pattern of biomarker DAPK-1 (NBP2-38468, Novus Biologicals, Centennial, CO, US). Tissue samples were obtained from six cases of oral lichen planus (OLP) (3 of reticular and 3 of erosive form), 30 cases of oral leukoplakia (OL) (10 with no dysplasia, 10 with mild dysplasia, and 10 with moderate/severe dysplasia), 22 cases of OSCC (2 well-differentiated, 17 moderately differentiated, and 3 poorly differentiated), as well as 5 cases of normal oral epithelium. The tissue samples were retrieved from the archives of the Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, as well as from St Lukas Hospital of Thessaloniki, Greece, from 2004-2019. In accordance with the Research and Ethics Committee guidelines of the Aristotle University, School of Dentistry, and the Helsinki II declaration, the study was conducted. The primary inclusion criteria for the study focused on the presence of sufficient precancerous or cancerous tissue. Conversely, inadequate tissue served as the exclusion criteria. The staining was evaluated exclusively in a quantitative manner. The vascular endothelial staining was evaluated as either positive or negative. If at least one endothelial cell exhibited positive staining, the section was classified as positive. Statistical analysis was carried out using SPSS Statistics v25.0 (IBM Corp., Armonk, NY, US) utilizing Pearson's chi-square or Fisher's exact test, depending on the sample size, to compare OLP to OL, OLP to OSCC, OLP to normal, OL to OSCC, OL to normal, and OSCC to normal. The significance level was established at 0.05 (p=0.05). Results A prevalence of positive OL cases may be noticed. The comparison between OLP and OL yielded Fisher's exact test of p>0.999, OLP and OSCC p=0.389, OLP and normal oral epithelium p>0.999, OL and OSCC p=0.226, OL and normal oral epithelium p>0.999, as well as OSCC and normal oral epithelium p=0.342. Conclusions The role of DAPK in tumorigenesis is already supported by limited literature. However, its implication in the development of OSCC and oral potentially malignant disorders (OPMDs) has yet to be elucidated. Its elevated expression in OL suggests a role in affecting the microenvironment, the vessels, in particular, surrounding oral potentially malignant lesions, possibly assisting their transition into cancer. The evaluation of the vascular-endothelial immunohistochemical profile of DAPK-1 in OL, OLP, and OSCC requires further studies in more tissue samples to illustrate its possible implications.
Collapse
Affiliation(s)
- Petros Papadopoulos
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Vasileios Zisis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Andreadis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | |
Collapse
|
2
|
Makgoo L, Mosebi S, Mbita Z. The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes (Basel) 2023; 14:1274. [PMID: 37372454 DOI: 10.3390/genes14061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Johanessburg 1710, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| |
Collapse
|
3
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Wang Q, Lin Y, Zhong W, Jiang Y, Lin Y. Regulatory Non-coding RNAs for Death Associated Protein Kinase Family. Front Mol Biosci 2021; 8:649100. [PMID: 34422899 PMCID: PMC8377501 DOI: 10.3389/fmolb.2021.649100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/26/2021] [Indexed: 01/24/2023] Open
Abstract
The death associated protein kinases (DAPKs) are a family of calcium dependent serine/threonine kinases initially identified in the regulation of apoptosis. Previous studies showed that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the regulation of gene expression and tumorigenesis. Recent studies indicated that non-coding RNAs participate in the regulation of DAPKs. In this review, we summarized the current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and circRNAs, that are involved in the regulation of DAPKs.
Collapse
Affiliation(s)
- Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yu Jiang
- Prenatal Diagnosis Centre, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Lee EJ, Cho M, Rho SB, Park J, Chae DA, Nguyen QTT. β-TrCP1-variant 4, a novel splice variant of β-TrCP1, is a negative regulator of β-TrCP1-variant 1 in β-catenin degradation. Biochem Biophys Res Commun 2021; 542:9-16. [PMID: 33482471 DOI: 10.1016/j.bbrc.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
β-transducin repeats-containing protein-1 (β-TrCP1) serves as the substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligases, which specifically ubiquitinate phosphorylated substrates. Three variants of β-TrCP1 are known and act as homodimer or heterodimer complexes. Here, we identified a novel full-sequenced variant, β-TrCP1-variant 4, which harbours exon II instead of exon III of variant 1, with no change in the open reading frame. The expression of β-TrCP1-variant 4 is lower than that of variant 1 or 2 in ovarian cancer cell lines, whereas it is abundantly expressed in normal and cancerous ovarian tissues. Moreover, β-TrCP1-variant 2 was aberrantly expressed more than variant 1 in ovarian cancer tissues whereas variant 1 was expressed more in normal tissues. Similar to variants 1 and 2, β-TrCP1-variant 4 directly interacts with β-catenin, one of the substrates of SCFβ-TrCP E3 ubiquitin ligase and down-regulates the transcriptional activity and protein expression of β-catenin with a significantly weaker effect than that by variants 1 and 2. However, the co-expression of β-TrCP1-variant 4 with variant 1 in same proportion has no effect, whereas other combinations effectively down-regulate the activity of β-catenin, indicating that the heterodimer of variants 1 and 4 has no function. Thus, β-TrCP1-variant 4 could play a critical role in SCFβ-TrCP E3 ligase-mediated ubiquitination by acting as a negative regulator of β-TrCP1-variant 1.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Minji Cho
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Republic of Korea.
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea.
| | - Dhan-Ah Chae
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| | - Que Thanh Thanh Nguyen
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|
8
|
Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules 2019; 9:biom9040151. [PMID: 30999631 PMCID: PMC6523460 DOI: 10.3390/biom9040151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological effect of multiple natural biomolecules such as IFN-γ, TNF-α, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 protein required for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered.
Collapse
|
9
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
10
|
Huang Y, Lin M, Chen X, Huang C, Zhang X, Chen L, Wu K, Chen Y, Zhu Y, Lin Y. Evaluation of the prognostic and physiological functions of death associated protein kinase 1 in breast cancer. Oncol Lett 2018; 15:8261-8268. [PMID: 29805560 PMCID: PMC5958705 DOI: 10.3892/ol.2018.8439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant cancer cell lines and possess physiological oncogenic functions in breast cancer. However, the ability of endogenous DAPK1 to suppress breast cancer cell mobility has not been assessed. In the present study, the prognostic function of DAPK1 in a Chinese patient cohort was evaluated, and no significant association was observed between DAPK1 expression and patient survival or lymph node metastasis. In order to investigate the physiological function of endogenous DAPK1, stable inducible DAPK1 knockdown MCF7 and MDA-MB-231 cell lines were established. Consistent with previous studies, endogenous DAPK1 only regulated cell viability in p53 mutant MDA-MB-231 cells. However, knockdown of DAPK1 did not significantly affect cell motility of either MCF7 or MDA-MB-231 cells. Altogether, these results further explored the function of endogenous DAPK1 in breast cancer and may shed light in understanding the molecular signaling pathways regulating the physiological function of DAPK1.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Meizhen Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Chaoqun Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiuli Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| |
Collapse
|
11
|
Xie JY, Chen PC, Zhang JL, Gao ZS, Neves H, Zhang SD, Wen Q, Chen WD, Kwok HF, Lin Y. The prognostic significance of DAPK1 in bladder cancer. PLoS One 2017; 12:e0175290. [PMID: 28388658 PMCID: PMC5384764 DOI: 10.1371/journal.pone.0175290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer is one of the leading causes of cancer-related death in men, however, there was only limited effective treatment for invasive bladder cancer. DAPK1 has been shown to play important role in apoptosis and autophagy to suppress cancer progression. Previous results have shown that DAPK1 promoter was hypermethylated in the majority of bladder cancer specimens, however, the prognostic significance of DAPK1 in bladder cancer has yet to be demonstrated. In the present study, we found that DAPK1 expression was negatively associated with tumor stage and a low level expression of DAPK1 in bladder cancer specimens were associated with shorter survival in bladder cancer patients in 3 independent bladder cancer datasets (n = 462). Further investigation showed that FGFR3 knockdown resulted in downregulation of DAPK1 in bladder cancer cell line, suggesting that FGFR3 may be an upstream factor of DAPK1. Further analysis of the 3 independent bladder cancer datasets have identified ACOX1, UPK2, TRAK1, PLEKHG6 and MT1X genes had their expression significantly correlated with that of DAPK1. Knockdown of DAPK1 in bladder cancer T24 cells resulted in downregulation of ACOX1, UPK2 and TRAK1. Interestingly, TRAK1, by itself, was a favorable prognostic marker in the 3 independent bladder cancer datasets. Importantly, by using connectivity mapping with DAPK1-associated gene signature, we found that vemurafenib and trametinib could possibly reverse DAPK1-associated gene signature, suggesting that inhibition of Raf/MEK pathway may be a potential therapeutic approach for bladder cancer. Indeed, treatment of vemurafenib in T24 bladder cancer cells resulted in upregulation of DAPK1 confirming our connectivity mapping, while knockdown of DAPK1 resulted in reduced sensitivity towards inhibition of Braf signaling by vemurafenib. Together, our results suggest that DAPK1 is an important prognostic marker and therapeutic target for bladder cancer and have identified possible therapeutic agents for future testing in bladder cancer models with low DAPK1 expression.
Collapse
Affiliation(s)
- Jian-Yun Xie
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
| | - Peng-Chen Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People’s Republic of China
| | - Jia-Li Zhang
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
| | - Ze-Shou Gao
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
| | - Henrique Neves
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC Building, Altnagelvin Hospital Campus, Glenshane Road, Londonderry, United Kingdom
| | - Qing Wen
- Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Wei-Dong Chen
- Department of Urology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, People’s Republic of China
- * E-mail: (YL); (HFK); (WDC)
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- * E-mail: (YL); (HFK); (WDC)
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People’s Republic of China
- * E-mail: (YL); (HFK); (WDC)
| |
Collapse
|
12
|
Zhu Y, Li S, Wang Q, Chen L, Wu K, Huang Y, Chen X, Lin Y. Quantitative and correlation analysis of the DNA methylation and expression of DAPK in breast cancer. PeerJ 2017; 5:e3084. [PMID: 28316888 PMCID: PMC5354070 DOI: 10.7717/peerj.3084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/12/2017] [Indexed: 01/21/2023] Open
Abstract
Background Death-associated protein kinase 1 (DAPK) is an important tumor suppressor kinase involved in the regulation of multiple cellular activities such as apoptosis and autophagy. DNA methylation of DAPK gene was found in various types of cancers and often correlated with the clinicopathological characteristics. However, the mRNA and protein expression of DAPK in the same sample was rarely measured. Thus, it was unclear if the correlation between DAPK gene methylation and clinicopathological parameters was due to the loss of DAPK expression. Methods In this study, the DNA methylation rate, mRNA and protein expression of DAPK was quantitatively detected in 15 pairs of breast cancer patient samples including tumor (T) and adjacent non-tumor (N) tissues. Results The correlation between DNA methylation rate and mRNA expression, together with the correlation between mRNA and protein expression, was calculated. No correlation was observed between any levels using either the measurement value of each sample or the T/N ratio of each pair. Discussion These data suggested that the DNA methylation status of DAPK did not correlate well with its mRNA or protein expression. Extra caution is needed when interpreting the DNA methylation data of DAPK gene in clinical studies.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Shuiqin Li
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Yide Huang
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University , Fuzhou , China
| |
Collapse
|
13
|
Singh P, Ravanan P, Talwar P. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy. Front Mol Neurosci 2016; 9:46. [PMID: 27445685 PMCID: PMC4917528 DOI: 10.3389/fnmol.2016.00046] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner.
Collapse
Affiliation(s)
- Pratibha Singh
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Lilienthal N, Lohmann G, Crispatzu G, Vasyutina E, Zittrich S, Mayer P, Herling CD, Tur MK, Hallek M, Pfitzer G, Barth S, Herling M. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells. Mol Cancer Ther 2016; 15:971-84. [PMID: 26826117 DOI: 10.1158/1535-7163.mct-15-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Apoptosis/drug effects
- Cell Line, Tumor
- Death-Associated Protein Kinases/antagonists & inhibitors
- Death-Associated Protein Kinases/chemistry
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Multigene Family
- Mutation
- Phosphorylation
- Protein Interaction Domains and Motifs/genetics
- Recombinant Fusion Proteins/administration & dosage
- Sialic Acid Binding Ig-like Lectin 2/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
Collapse
Affiliation(s)
- Nils Lilienthal
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Federal Institute for Drugs and Devices (BfArM), Bonn, Germany
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Stefan Zittrich
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Carmen Diana Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital, Justus Liebig University Gießen, Gießen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, RWTH Aachen, Aachen, Germany. South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany.
| |
Collapse
|
15
|
Li Y, Zhu M, Zhang X, Cheng D, Ma X. Clinical significance of DAPK promoter hypermethylation in lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1785-96. [PMID: 25848215 PMCID: PMC4378294 DOI: 10.2147/dddt.s78012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Death-associated protein kinase 1 (DAPK) is an important serine/threonine kinase involved in various cellular processes, including apoptosis, autophagy, and inflammation. DAPK expression and activity are deregulated in a variety of diseases including cancer. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. However, the association between DAPK promoter hypermethylation and the clinicopathological significance of lung cancer remains unclear. In this study, we searched the MEDLINE, PubMed, Web of Science, and Scopus databases, systematically investigated the studies of DAPK promoter hypermethylation in lung cancer and quantified the association between DAPK promoter hypermethylation and its clinicopathological significance by meta-analysis. We observed that the frequency of DAPK methylation was significantly higher in lung cancer than in non-malignant lung tissues (odds ratio 6.02, 95% confidence interval 3.17-11.42, P<0.00001). The pooled results also showed the presence of a prognostic impact of DAPK gene methylation in lung cancer patients (odds ratio 3.63, 95% confidence interval 1.09-12.06, P=0.04). In addition, we summarized these findings and discuss tumor suppressor function, clinicopathological significance, and potential drug targeting of DAPK in lung cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Dongjun Cheng
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xitao Ma
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
16
|
Abstract
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.
Collapse
|
17
|
Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C. Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci 2013; 14:13858-72. [PMID: 23880846 PMCID: PMC3742222 DOI: 10.3390/ijms140713858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 01/09/2023] Open
Abstract
Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.
Collapse
Affiliation(s)
- Syam Nair
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India; E-Mail:
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, The Rayne Institute, King’s College London St Thomas’ Hospital, London SE1 7EH, UK; E-Mail:
| | - Rajanikant Krishnamurthy
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India; E-Mail:
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, The Rayne Institute, King’s College London St Thomas’ Hospital, London SE1 7EH, UK; E-Mail:
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg 40530, Sweden; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-31-7863-498; Fax: +46-31-7863-512
| |
Collapse
|
18
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. ACTA ACUST UNITED AC 2010; 201:128-32. [PMID: 20682398 DOI: 10.1016/j.cancergencyto.2010.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/05/2010] [Accepted: 05/26/2010] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the methylation of the SFRP2, P16, DAPK1, HIC1, and MGMT genes, as well as the mutation of amino acid codons 12 and 13 of the KRAS gene in normal and tumor tissue DNA of patients diagnosed with sporadic colorectal cancer (SCRC). The methylation of gene regions and the KRAS mutations of normal (N) and tumor tissue (T) DNA obtained from 17 patients diagnosed with SCRC and 20 healthy controls were investigated using the polymerase chain reaction and reverse-hybridization methods. There was an Asp mutation in four patients, an Asp and Ser mutations in one patient in codon 12 of the KRAS gene, and an Asp mutation in codon 13 in eight patients. Overall promoter methylation (OPM) in the SFRP2 gene was observed in one N and four T, whereas partial promoter methylation (PPM) was observed in two N and five T. OPM in the P16 gene was present in one T. In the DAPK1 gene, OPM existed in seven T and five N, while PPM was present in two N. In the HIC1 gene, OPM was demonstrated in three T, while PPM was noted in two N; however, no methylation existed in N. In the MGMT gene, OPM occurred in five T and two N, and PPM was present in one T. KRAS mutations in Turkish patients with SCRC are similar to those of other population groups. Methylations in the genes, which underwent methylation analysis, were higher in T in comparison with N, and it has been suggested that significant results would be obtained by making a study with a larger population.
Collapse
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology and Genetics, Gaziantep University, Turkey.
| | | | | | | | | | | |
Collapse
|
20
|
Widau RC, Jin Y, Dixon SA, Wadzinski BE, Gallagher PJ. Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 2010; 285:13827-38. [PMID: 20220139 DOI: 10.1074/jbc.m109.085076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor, death-associated protein kinase (DAPK), is a Ca(2+)/calmodulin-regulated Ser/Thr kinase with an important role in regulating cytoskeletal dynamics. Autophosphorylation within the calmodulin-binding domain at Ser-308 inhibits DAPK catalytic activity. Dephosphorylation of Ser-308 by a previously unknown phosphatase enhances kinase activity and proteasome-mediated degradation of DAPK. In these studies, we identified two holoenzyme forms of protein phosphatase 2A (PP2A), ABalphaC and ABdeltaC, as DAPK-interacting proteins. These phosphatase holoenzymes dephosphorylate DAPK at Ser-308 in vitro and in vivo resulting in enhanced kinase activity of DAPK. The enzymatic activity of PP2A also negatively regulates DAPK levels by enhancing proteasome-mediated degradation of the kinase. Overexpression of wild type DAPK induces cell rounding and detachment in HEK293 cells; however, this effect is not observed following expression of an inactive DAPK S308E mutant. Finally, activation of DAPK by PP2A was found to be required for ceramide-induced anoikis. Together, our results provide a mechanism by which PP2A and DAPK activities control cell adhesion and anoikis.
Collapse
Affiliation(s)
- Ryan C Widau
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|