1
|
Xuan G, Zhang Y, Cui J, Zhou J, Sui C. Propofol-associated serious adverse events: an analysis of the FAERS database. Biotechnol Genet Eng Rev 2024; 40:2874-2887. [PMID: 37066882 DOI: 10.1080/02648725.2023.2202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Propofol is an ultra-fast-acting intravenous anesthetic, which is rapidly metabolized primarily into inactive compounds in the live and then excreted in the urine. The purpose of this study is to explore the risk signals of propofol based on the US FDA Adverse Event Reporting System database. The risk signals of propofol-related adverse reactions in adverse event (AE) reports from 2004 to 2021 in the US FAERS were mined using ratio-report method (ROR) and the ratio-report ratio method (PRR) methods. We screened out 1651 pairs AE reports using propofol as primary suspect (PS) drugs. ROR, PRR, BCPNN and MGPS methods were used to calculate respectively, there are 363 positive preferred terms (PT) signals with 9549 cases. Among them, the top 3 adverse reactions associated with using propofol from the FAERS database were anaphylactic shock, hypotension and propofol infusion syndrome. The top 3 systems of the body associated with adverse reaction of propofol from the FAERS database were General disorders, Cardiac disorders and administration site conditions and Respiratory, thoracic and mediastinal disorders. The top 4 indication of using propofol from the FAERS database, including anaesthesia, induction of anaesthesia, sedation, general anaesthesia. There are many adverse reactions that are not included in the drug insert of propofol and involve a wide range of organs and/or systems. Caution should be exercised in the clinical use of propofol.
Collapse
Affiliation(s)
- Guocheng Xuan
- Anesthesiology department, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning, China
| | - Yi Zhang
- Anesthesiology department, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning, China
| | - Jinhua Cui
- Anesthesiology department, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning, China
| | - Jing Zhou
- Anesthesiology department, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning, China
| | - Cheng Sui
- Anesthesiology department, Xinhua Hospital affiliated to Dalian University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Sobot Novakovic S, Uletilovic S, Mandic-Kovacevic N, Cvjetkovic T, Stojiljkovic MP, Skrbic R, Loncar-Stojiljkovic D. Comparative Effects of Target-Controlled Infusion of Propofol Versus Spinal and Thiopental-Sevoflurane Anesthesia on Lipid Peroxidation in Elective Cesarean Section: A Prospective, Open-Label Study. Cureus 2024; 16:e61995. [PMID: 38984000 PMCID: PMC11231961 DOI: 10.7759/cureus.61995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND During pregnancy, physiological changes can increase oxidative stress (OS) in both mothers and fetuses. The use of anesthesia for cesarean sections (CSs) could exacerbate this stress due to its impact on the ischemia-reperfusion effect. Our study aimed to explore the effects of target-controlled infusion of propofol on OS during CSs, and to compare these effects with those of spinal and thiopental-sevoflurane anesthesia. METHODS The study included ninety parturients undergoing elective CS, allocated into three groups: Group S (spinal) (n = 30), Group P (propofol) (n = 30), and Group TS (thiopental-sevoflurane) (n = 30). Venous blood samples were taken from mothers at three time points, before, during, and after surgery, and one sample was taken from the umbilical vein after delivery. Blood samples were analyzed with the thiobarbituric acid reactive substances (TBARS) assay and blood gas analysis. A statistical comparison between groups was obtained by one-way analysis of variance (ANOVA) and the Wilcoxon test where appropriate. RESULTS Levels of TBARS after the induction of anesthesia were lower in all groups compared to values preoperatively. In Group P, TBARS levels started to decrease in the first five minutes after the induction (1.90 ± 0.47; P < 0.001) and had significantly lower values compared to Group S (2.22 ± 0.21) and Group TS (2.40 ± 0.20). Two hours after surgery, TBARS values were the lowest in Group P (1.76 ± 0.15, P<0.001), compared to Group S (2.18 ± 0.24) and Group TS (2.41 ± 0.21). TBARS value in umbilical venous blood was significantly lower in Group P (1.56 ± 0.16, P < 0.001) compared to Group S (2.18 ± 0.17) and Group TS (2.09 ± 0.09). Umbilical cord venous blood gas values (pH, PCO2, HCO3, lactates, and base excess (BE)) were not different between the groups, except for PO2, which was significantly lower in Group S (20.5 ± 5.0; P < 0.001) compared to Group P (36.5 ± 19.2) and Group TS (33.5 ± 10.1). CONCLUSION Target-controlled infusion of propofol anesthesia could be advantageous for parturients with compromised oxidative status, especially those undergoing emergency CSs when general anesthesia is required.
Collapse
Affiliation(s)
- Suzana Sobot Novakovic
- Anesthesiology and Critical Care, University Clinical Centre of the Republic of Srpska, Banja Luka, BIH
- Anesthesiology and Critical Care, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Snezana Uletilovic
- Medical Biochemistry and Chemistry, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Nebojsa Mandic-Kovacevic
- Pharmacy, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Tanja Cvjetkovic
- Medical Biochemistry and Chemistry, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Milos P Stojiljkovic
- Pharmacology, Toxicology and Clinical Pharmacology, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Ranko Skrbic
- Pharmacology, Toxicology and Clinical Pharmacology, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, BIH
| | - Dragana Loncar-Stojiljkovic
- Anesthesiology and Critical Care, Institute for Cardiovascular Diseases "Dedinje", Belgrade, SRB
- Anesthesiology and Critical Care, Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, BIH
| |
Collapse
|
3
|
Safaeian L, Mirian M, Bahrizadeh S. Evolocumab, a PCSK9 inhibitor, protects human endothelial cells against H 2O 2-induced oxidative stress. Arch Physiol Biochem 2022; 128:1681-1686. [PMID: 32619370 DOI: 10.1080/13813455.2020.1788605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Recent surveys have shown an association between proprotein convertase subtilisin/kexin type 9 (PCSK9) and oxidative stress. OBJECTIVE In this investigation, the effect of evolocumab an anti-PCSK9 antibody was assessed against oxidative damage caused by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVEC). MATERIAL AND METHODS Viability of HUVEC was measured by MTT assay. Hydroperoxides and malondialdehyde (MDA) levels, and ferric reducing antioxidant power (FRAP) were detected in HUVEC that pre-treated with evolocumab and, then exposed to H2O2. RESULTS Evolocumab significantly prevented the cytotoxicity induced by H2O2 at the concentrations of 5-100 µg/ml. Pre-treatment of HUVEC with evolocumab reduced hydroperoxides and MDA levels and also increased FRAP value in intra- and extra-cellular mediums compared with H2O2 stimulated cells at different concentration ranges. CONCLUSION This study displayed anti-oxidative and cytoprotective activities of evolocumab against oxidative damage caused by H2O2 in endothelial cells.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahryar Bahrizadeh
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Zhou FM, Huang JJ, Hu XJ, Wang J, Zhu BQ, Ding ZS, Huang S, Fang JJ. Protective effects of flavonoids from the leaves of Carya cathayensis Sarg. against H 2O 2-induced oxidative damage and apoptosis in vitro. Exp Ther Med 2021; 22:1443. [PMID: 34721685 PMCID: PMC8549100 DOI: 10.3892/etm.2021.10878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen peroxide (H2O2) can induce apoptosis by releasing reactive oxygen species (ROS) and reactive nitrogen species, which cause mitochondrial damage. The present study aimed to investigate the protective effects of flavonoids from the leaves of Carya cathayensis Sarg. against H2O2-induced oxidative damage and apoptosis in vitro. The bioactivity of total flavonoids (TFs) and five monomeric flavonoids [cardamonin (Car), pinostrobin chalcone, wogonin, chrysin and pinocembrin] from the leaves of Carya cathayensis Sarg. (LCCS) were tested to prevent oxidative damage to rat aortic endothelial cells (RAECs) induced by H2O2. Oxidated superoxide dismutase, glutathione peroxidase, malondialdehyde, lactate dehydrogenase and ROS were analyzed to evaluate the antioxidant activity. Gene and protein expression patterns were assessed using reverse transcription-quantitative PCR and western blotting, respectively. The results indicated that TFs and Car inhibited H2O2-induced cytotoxicity and apoptosis of RAECs. Additionally, they regulated the level of oxidase and inhibited the production of ROS. Overall, the TFs extracted from LCCS could potentially be developed as effective candidate drugs to prevent oxidative stress in the future; moreover, they could also provide a direction in investigations for preventing antioxidant activity through the ROS pathway.
Collapse
Affiliation(s)
- Fang-Mei Zhou
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jing-Jing Huang
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xu-Jiao Hu
- Inspection Department, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jingwei Wang
- Department of Pathology, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Bing-Qi Zhu
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhi-Shan Ding
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shigao Huang
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, P.R. China
| | - Jing-Jing Fang
- Inspection Department, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
5
|
Ou TT, Chuang CM, Leung YM, Lee IT, Wu CH. Paeoniflorin attenuates oxidative stress injury and improves mitochondrial membrane potential in human EA.hy926 endothelial cell through p-eIF2α and CHOP signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Chen L, Wan Y, Liu Y, Li T. Propofol inhibits biological functions of leukaemia stem and differentiated cells through suppressing Wnt/β-catenin and Akt/mTOR. Clin Exp Pharmacol Physiol 2019; 47:127-134. [PMID: 31429973 DOI: 10.1111/1440-1681.13167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
The biological roles of intravenous anaesthetic propofol in cancer have been shown by various studies using cancer cell lines that represent differentiated cancer cells. However, the activities of propofol in cancer stem cells have not been elucidated. In this work, we examined the effects and mechanisms of propofol on acute myeloid leukaemia (AML) differentiated and CD34+ CD38- stem cells. We found that propofol inhibited growth, differentiation and self-renewal capabilities of AML stem cells regardless of cellular origin and genetic profiling. In addition, propofol inhibited the growth of AML differentiated cells. Propofol significantly induced apoptosis of AML differentiated but not CD34+ CD38- stem cells. We further found that propofol significantly augmented the efficacy of AML standard therapeutic drugs. Consistent with the previous findings, we showed that propofol suppressed the Akt/mTOR pathway in AML cells. We also found that propofol inhibited pathways important for stem cell maintenance and self-renewal, such as Wnt/β-catenin. Overexpression of constitutively active Akt partially reversed the inhibitory effects of propofol in AML differentiated cells. Stabilization of β-catenin using genetic and pharmacological approaches also partially rescued the inhibitory effects of propofol in AML differentiated and stem cells. Our work shows that propofol targets leukaemia cells at all stages of development, in a cell type-specific manner. Inhibition of both Akt/mTOR and Wnt/β-catenin is required for the action of propofol in AML. Our findings also highlight the activities of propofol on cancer stem cells.
Collapse
Affiliation(s)
- Liufang Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Ahmad KA, Ze H, Chen J, Khan FU, Xuezhuo C, Xu J, Qilong D. The protective effects of a novel synthetic β-elemene derivative on human umbilical vein endothelial cells against oxidative stress-induced injury: Involvement of antioxidation and PI3k/Akt/eNOS/NO signaling pathways. Biomed Pharmacother 2018; 106:1734-1741. [PMID: 30119249 DOI: 10.1016/j.biopha.2018.07.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/23/2023] Open
Abstract
Antioxidant therapy is considered as promising strategy for treating oxidative stress-induced cardiovascular disease. Bis (β-elemene-13-yl) glutarate (BEG) is a novel β-elemene derivative. Herein, we examined the antioxidant activity of BEG on human umbilical vein endothelial cells (HUVECs) after injury with hydrogen peroxide (H2O2) and investigated the mechanism involved. HUVECs were divided into the following groups: control group (untreated cells); treated groups (cells treated with 0.1, 1, 10 μmol/L of BEG); positive control group (cells treated with 0.1 mM Vitamin E); model group (cells treated with 0.5 mM H2O2 alone). Cells were pre-incubated with or without BEG for 24 h and then incubated for a further 2 h with 0.5 mM H2O2. Our results showed that BEG significantly reduced H2O2 induced loss in endothelial cell viability, reactive oxygen species (ROS) production, reduced lactate dehydrogenase (LDH) release, and malonyldialdehyde (MDA) level in a concentration-dependent manner. Also, BEG increased the cellular the superoxide dismutase (SOD) activity. Moreover, we found that H2O2 decreased Akt and eNOS phosphorylation, which perhaps, indirectly reduced nitric oxide (NO) production. These effects induced by H2O2, however, were reduced by pre-treatment with BEG. BEG effects were inhibited by a PI3K inhibitor (wortmannin) and eNOS inhibitor (L-NAME). In conclusion, the present study demonstrated that BEG has antioxidant activity. Furthermore, BEG reduced H2O2-induced endothelial cells injury by the involvement of antioxidation and PI3K/Akt/eNOS/NO signaling pathways.
Collapse
Affiliation(s)
- Khalil Ali Ahmad
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue, 639, Nanjing, Jiangsu, 211198, China; Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hong Ze
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue, 639, Nanjing, Jiangsu, 211198, China
| | - Jichao Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Farhan Ullah Khan
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Xuezhuo
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue, 639, Nanjing, Jiangsu, 211198, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ding Qilong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue, 639, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
8
|
Zhang L, Wang J, Liang J, Feng D, Deng F, Yang Y, Lu Y, Hu Z. Propofol prevents human umbilical vein endothelial cell injury from Ang II-induced apoptosis by activating the ACE2-(1-7)-Mas axis and eNOS phosphorylation. PLoS One 2018; 13:e0199373. [PMID: 29995907 PMCID: PMC6040691 DOI: 10.1371/journal.pone.0199373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Angiotensin II (AngII), a vasoactive peptide that elevates arterial blood pressure and results in hypertension, has been reported to directly induce vascular endothelial cell apoptosis. Recent work has demonstrated that propofol pre-treatment attenuates angiotensin II-induced apoptosis in human coronary artery endothelial cells. However, the underlying mechanism remains largely unknown. Here, we investigated human umbilical vein endothelial cells (HUVECs) subjected to angiotensin II-induced apoptosis in the presence or absence of propofol treatment and found that angiotensin II-induced apoptosis was attenuated by propofol in a dose-dependent manner. Furthermore, ELISA assays demonstrated that the ratio of angiotensin (1–7) (Ang (1–7)) to Ang II was increased after propofol treatment. We examined the expression of ACE2, Ang (1–7) and Mas and found that the ACE2-Ang (1–7)-Mas axis was up-regulated by propofol, while ACE2 overexpression increased phosphorylated endothelial nitric oxide synthase (phosphorylated eNOS) expression and siACE2 resulted in the repression of endothelial nitric oxide synthase (eNOS) phosphorylation. In conclusion, our study revealed that propofol can inhibit endothelial cell apoptosis induced by Ang II by activating the ACE2-Ang (1–7)-Mas axis and further up-regulating the expression and phosphorylation of eNOS.
Collapse
Affiliation(s)
- Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingjing Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiuqing Liang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Du Feng
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fan Deng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhe Hu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- * E-mail:
| |
Collapse
|
9
|
Jia J, Sun Y, Hu Z, Li Y, Ruan X. Propofol inhibits the release of interleukin-6, 8 and tumor necrosis factor-α correlating with high-mobility group box 1 expression in lipopolysaccharides-stimulated RAW 264.7 cells. BMC Anesthesiol 2017; 17:148. [PMID: 29073894 PMCID: PMC5658982 DOI: 10.1186/s12871-017-0441-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/19/2017] [Indexed: 12/05/2022] Open
Abstract
Background Studies have found that propofol can inhibit endotoxin-induced monocyte-macrophages to produce various inflammatory factors. This study is to disclose whether the propofol affects the expression of high-mobility group box 1 (HMGB1) in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and the release of interleukin-6 (IL-6), 8 (IL-8) and tumor necrosis factor-α (TNF-α). Methods RAW 264.7 cells were divided into four groups for intervention. After culturing for 16 h, the cells and culture supernatants were collected. The expression of HMGB1 in RAW 264.7 cells was detected by Western blot. The levels of IL-6, IL-8 and TNF-α in supernatants of cells were determined by enzyme-linked immunosorbent assay (ELISA). Results Stimulation of LPS increased the expression of HMGB1 and promoted the release of IL-6, IL-8 and TNF-α in supernatants of RAW 264.7 cells (p < 0.05); however, propofol down-regulated the expression of LPS-stimulated HMGB1 and reduced the LPS-stimulated releases of IL-6, IL-8 and TNF-α in supernatants of RAW 264.7 cells (p < 0.05). Moreover, the releases of IL-6, IL-8 and TNF-α intimately correlated with the expression of HMGB1 in this process (p < 0.05). Conclusion Propofol inhibited the releases of IL-6, IL-8 and TNF-α in LPS-stimulated RAW 264.7 cells, and the levels of IL-6, IL-8 and TNF-α intimately correlated with the expression of HMGB1, which indicating that propofol may prevent inflammatory responses through reducing the releases of these cytokines and inflammatory mediators.
Collapse
Affiliation(s)
- Jie Jia
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yijuan Sun
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zurong Hu
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yi Li
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiangcai Ruan
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China. .,Department of Anesthesiology, Guangzhou First People's Hospital, Affiliated Hospital of Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
10
|
Tan Z, Peng A, Xu J, Ouyang M. Propofol enhances BCR-ABL TKIs' inhibitory effects in chronic myeloid leukemia through Akt/mTOR suppression. BMC Anesthesiol 2017; 17:132. [PMID: 28962554 PMCID: PMC5622516 DOI: 10.1186/s12871-017-0423-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background The anti-cancer activities of intravenous anesthetic drug propofol have been demonstrated in various types of cancers but not in chronic myeloid leukemia (CML). Methods We systematically examined the effect of propofol and its combination with BCR-ABL tyrosine kinase inhibitors (TKIs) in CML cell lines, patient progenitor cells and mouse xenograft model. We analyzed propofol’s underlying mechanism focusing on survival pathway in CML cells. Results We show that propofol alone is active in inhibiting proliferation and inducing apoptosis in KBM-7, KU812 and K562 cells, and acts synergistically with imatinib or dasatinib, in in vitro cell culture system and in vivo xenograft model. In addition, propofol is more effective in inducing apoptosis and inhibiting colony formation in CML CD34 progenitor cells than normal bone marrow (NBM) counterparts. Combination of propofol and dasatinib significantly eliminates CML CD34 without affecting NBM CD34 cells. We further demonstrate that propofol suppresses phosphorylation of Akt, mTOR, S6 and 4EBP1 in K562. Overexpression of constitutively active Akt significantly reverses the inhibitory effects of propofol in K562, confirm that propofol acts on CML cells via inhibition of Akt/mTOR. Interestingly, the levels of p-Akt, p-mTOR and p-S6 are lower in cells treated with combination of propofol and imatinib than cells treated with propofol or imatinib alone, suggesting that propofol augments BCR-ABL TKI’s inhibitory effect via suppressing Akt/mTOR pathway. Conclusion Our work shows that propofol can be repurposed to for CML treatment. Our findings highlight the therapeutic value of Akt/mTOR in overcoming resistance to BCR-ABL TKI treatment in CML. Electronic supplementary material The online version of this article (10.1186/s12871-017-0423-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhimin Tan
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Xinhu Road No.1333, Bao'an district, Shenzhen, 518100, Guangdong province, China
| | - Aixia Peng
- Department of Oncology, Shenzhen Hospital, Southern Medical University, Xinhu Road No.1333, Bao'an district, Shenzhen, 518100, Guangdong province, China
| | - Jingwen Xu
- Department of Anesthesiology, Fifth Affiliated Hospital, Southern Medical University, Congcheng Road No. 566, Conghua district, Guangzhou, Guangdong province, 510900, China
| | - Mingwen Ouyang
- Department of Anesthesiology, Fifth Affiliated Hospital, Southern Medical University, Congcheng Road No. 566, Conghua district, Guangzhou, Guangdong province, 510900, China.
| |
Collapse
|
11
|
Yang N, Liang Y, Yang P, Ji F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1α and tumor aggressiveness in non-small cell lung cancer. Oncol Rep 2017; 37:2611-2619. [PMID: 28426124 PMCID: PMC5428906 DOI: 10.3892/or.2017.5514] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor hypoxia has been recognized as a characteristic of the tumor microenvironment and promotes metastasis in a variety of types of cancer. However, in lung cancer, the role of hypoxia-inducible factor 1α (HIF-1α) in modulating the cellular response to the inflammation-related microenvironment remains unclear. In the present study, enhanced expression of HIF-1α accompanied by an increased ROS level was observed in lipopolysaccharide (LPS)-stimulated non-small cell lung cancer (NSCLC) cells. In addition, propofol, a general anesthetic, was found to significantly reduce the LPS-induced upregulation of HIF-1α and ROS in a dose-dependent manner. Further study showed that propofol may antagonize the role of LPS in activating HIF-1α through attenuating the protein stability and nuclear localization of HIF-1α. Moreover, knockdown of HIF-1α attenuated expression of mesenchymal marker, vimentin, but promoted the expression of epidermal marker, E-cadherin, in the LPS-treated NSCLC cells. Notably, LPS-induced epithelial-to-mesenchymal transition (EMT) was notably suppressed by propofol treatment. Consistently, a wound healing assay revealed that propofol abrogated LPS-stimulated migration of NSCLC cells while overexpression of HIF-1α reversed the effects of propofol. Similarly, we investigated the influence of propofol on the invasive capability of NSCLC cells. Western blot and RT-PCR analyses indicated that both knockdown of HIF-1α and treatment of propofol attenuated the LPS-activated expression of MMP2 and MMP9 which are necessary for tumor invasion. However, results from the Transwell assay confirmed that propofol also suppressed cell invasion by decreasing HIF-1α expression in the LPS-treated NSCLC cells. Analysis of clinical specimens demonstrated abnormal expression of HIF-1α in NSCLC tissues and a poor prognosis in patients with elevated HIF-1α expression. Thus, the present study suggests a potential strategy for NSCLC by targeting HIF-1α.
Collapse
Affiliation(s)
- Nengli Yang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pei Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
12
|
Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 2016; 86:324-333. [PMID: 28011380 DOI: 10.1016/j.biopha.2016.12.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. METHODS The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. RESULTS In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. CONCLUSION Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangyang Pang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Mengjiao Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Anesthetic Propofol-Induced Gene Expression Changes in Patients Undergoing Coronary Artery Bypass Graft Surgery Based on Dynamical Differential Coexpression Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:7097612. [PMID: 27437027 PMCID: PMC4942588 DOI: 10.1155/2016/7097612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 02/02/2023]
Abstract
We aimed to determine the influence of anesthetic propofol on gene expression in patients treated by coronary artery bypass graft (CABG) surgery based on differential coexpression network (DCN) and to further reveal the novel mechanisms of the cardioprotective effects of propofol. Firstly, we constructed the DCN for disease condition based on Pearson correlation coefficient (PCC) and weight value. Secondly, the inference of modules was applied to search modules from DCN with same members but varied connectivity. Furthermore, we measured the statistical significance of the modules for selecting differential modules (DMs). Finally, attract method was used for DMs analysis to select key modules. Based on the δ value, 11928 edges and 2956 nodes were chosen to construct DCNs. A total of 29 seed genes were selected. Moreover, by quantifying connectivity changes in shared gene modules across different conditions, 8 DMs with higher connectivity dynamics were identified. Then, we extracted key modules using attract method, there were 8 key modules, and the top 3 modules were module 1, 2, and 3. Furthermore, GCG, PPY, and PON1 were initial seed genes of these 3 key modules, respectively. Accordingly, GCG and PON1 might exert important roles in the cardioprotective effects of propofol during CABG.
Collapse
|
14
|
Nadeev AD, Kudryavtsev IV, Serebriakova MK, Avdonin PV, Zinchenko VP, Goncharov NV. Dual proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Aguirre JA, Lucchinetti E, Clanachan AS, Plane F, Zaugg M. Unraveling Interactions Between Anesthetics and the Endothelium. Anesth Analg 2016; 122:330-48. [DOI: 10.1213/ane.0000000000001053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Chang CY, Chen PH, Lu SC, Hsieh MC, Lin CW, Lee HM, Jawan B, Kao YH. Propofol-enhanced autophagy increases motility and angiogenic capacity of cultured human umbilical vascular endothelial cells. Life Sci 2015; 142:49-59. [DOI: 10.1016/j.lfs.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022]
|
17
|
Angiotensin II-induced mouse hippocampal neuronal HT22 cell apoptosis was inhibited by propofol: Role of neuronal nitric oxide synthase and metallothinonein-3. Neuroscience 2015; 305:117-27. [DOI: 10.1016/j.neuroscience.2015.07.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/19/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023]
|
18
|
Xie CL, Pan YB, Hu LQ, Qian YN. Propofol attenuates hydrogenperoxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways. Korean J Anesthesiol 2015; 68:488-95. [PMID: 26495060 PMCID: PMC4610929 DOI: 10.4097/kjae.2015.68.5.488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Propofol has been reported to protect vascular endothelial cells against oxidative stress. In this study we investigated its effect on hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and examined the possible signaling pathways. METHODS HUVECs were pretreated with propofol (1, 5, 25, and 50 µM) for 30 min and then co-incubated with 0.4 mM H2O2 for 4 h. Cell viability was assessed using a Cell Counting Kit-8. Cell apoptosis was analyzed using flow cytometry with annexin V/propidium iodide staining, and evaluated by quantifying caspase-3, Bax, and Bcl-2 expression levels. The expression levels of p38 mitogen activated protein kinase (MAPK), phosphorylated (p)-p38 MAPK, cJun-N-terminal kinases (JNK), phosphorylated (p)-JNK, Akt and phosphorylated Akt [(p)-Akt] (Ser473) were measured by western blotting. RESULTS H2O2 treatment induced the activation of caspase-3, downregulated Bcl-2 expression, and up-regulated Bax expression, all of which were dose-dependently attenuated by propofol pretreatment. Furthermore, propofol significantly ameliorated H2O2-induced phosphorylation of p38 MAPK, JNK, and Akt in HUVECs. CONCLUSIONS Propofol can protect HUVECs against H2O2-induced apoptosis via a mechanism that may involve p38 MAPK, JNK, and Akt signaling pathways.
Collapse
Affiliation(s)
- Cheng Lan Xie
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Huai'an Second Hospital Affiliated to Xuzhou Medical College, Huai'an, China
| | - Yin Bing Pan
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Liu Qing Hu
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Ning Qian
- Department of Anesthesiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Kim JH, Kim BK, Kim DW, Shin HY, Yu SB, Kim DS, Ryu SJ, Kim KH, Jang HK, Kim JD. Effect of Propofol on microRNA Expression Profile in Adipocyte-Derived Adult Stem Cells. Chonnam Med J 2014; 50:86-90. [PMID: 25568843 PMCID: PMC4276796 DOI: 10.4068/cmj.2014.50.3.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) pathways have been implicated in stem cell regulation. This study investigated the molecular effects of propofol on adipocyte stem cells (ASCs) by analyzing RNA expression arrays. Human ASCs were isolated by use of a liposuction procedure. ASCs were treated with saline, 50 µM propofol, or 100 µM propofol in culture media for 3 hours. After the isolation of total RNA, the expression of 76 miRNAs was evaluated with peptide nucleic acid-miRNA array analysis through denaturation and hybridization processes. Treatment with 50 µM propofol resulted in significant down-regulation of expression of 18 miRNAs and upregulation of expression of 25 miRNAs; 100 µM propofol resulted in significant downregulation of expression of 14 miRNAs and upregulation of expression of 29 miRNAs. The lowest expression was seen for miR-204, which was 0.07-fold with 50 µM propofol and 0.18-fold with 100 µM propofol. The highest expression was seen for miR-208b, which was 11.23-fold with 50 µM propofol and 11.20-fold with 100 µM propofol. Expression patterns of miRNAs were not significantly different between 50 µM and 100 µM propofol treatment. The results of this study suggest that propofol is involved in altering the miRNA expression level in human ASCs. Additional research is necessary to establish the functional effect of miRNA alteration by propofol.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Department of Anesthesiology and Pain Medicine, CHA Ahngang Hospital, Seoul, Korea
| | - Bo-Kyeom Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Dong-Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Hye-Young Shin
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Soo-Bong Yu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Doo-Sik Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sie-Jeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Kyung-Han Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Hee-Kyung Jang
- Department of Pathology, Kosin University College of Medicine, Busan, Korea
| | - Ju-Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
20
|
Taheri Moghadam G, Hosseini-Zijoud SM, Heidary Shayesteh T, Ghasemi H, Ranjbar A. Attenuation of cisplathin-induced toxic oxidative stress by propofol. Anesth Pain Med 2014; 4:e14221. [PMID: 25599022 PMCID: PMC4286804 DOI: 10.5812/aapm.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Antioxidant effects of propofol (2, 6-diisopropylphenol) were evaluated against cisplatin-induced oxidative stress in rat. Objectives: In this experimental study, 20 male rats were equally divided into 4 groups (5 rats each), and were treated by propofol (10 mg/kg/day, IP), or cisplatin (7 mg /kg/day, IP), or both. Materials and Methods: Group one was control, while group 2 was given cisplatin (7 mg /kg/day, IP). Animals of the third group received only propofol (10 mg/kg/day, IP). Group 4 was given propofol with cisplatin once per day for 7 days. After treatment, blood urea nitrogen, creatinine levels, and oxidative stress markers such as total thiol groups (TTG), lipid peroxidation (LPO), and total antioxidant capacity (TAC) were measured. Results: Oxidative stress induced by cisplatin, was evident by a significant increase in LPO and decrease in TTG and TAC. Propofol recovered cisplatin -induced changes in TAC, TTG and LPO in blood. Conclusions: It is concluded that oxidative damage is the mechanism of cisplatin toxicity, which can be recovered by propofol.
Collapse
Affiliation(s)
| | - Seyed-Mostafa Hosseini-Zijoud
- Clinical Research Development Unit, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tavakol Heidary Shayesteh
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Ghasemi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding author: Akram Ranjbar, Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. Tel/Fax: + 98-8118380031, E-mail:
| |
Collapse
|
21
|
Pravda J. Metabolic theory of septic shock. World J Crit Care Med 2014; 3:45-54. [PMID: 24892019 PMCID: PMC4038812 DOI: 10.5492/wjccm.v3.i2.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Septic shock is a life threatening condition that can develop subsequent to infection. Mortality can reach as high as 80% with over 150000 deaths yearly in the United States alone. Septic shock causes progressive failure of vital homeostatic mechanisms culminating in immunosuppression, coagulopathy and microvascular dysfunction which can lead to refractory hypotension, organ failure and death. The hypermetabolic response that accompanies a systemic inflammatory reaction places high demands upon stored nutritional resources. A crucial element that can become depleted early during the progression to septic shock is glutathione. Glutathione is chiefly responsible for supplying reducing equivalents to neutralize hydrogen peroxide, a toxic oxidizing agent that is produced during normal metabolism. Without glutathione, hydrogen peroxide can rise to toxic levels in tissues and blood where it can cause severe oxidative injury to organs and to the microvasculature. Continued exposure can result in microvascular dysfunction, capillary leakage and septic shock. It is the aim of this paper to present evidence that elevated systemic levels of hydrogen peroxide are present in septic shock victims and that it significantly contributes to the development and progression of this frequently lethal condition.
Collapse
|
22
|
Zhu M, Chen J, Jiang H, Miao C. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells. Cardiovasc Diabetol 2013; 12:13. [PMID: 23311470 PMCID: PMC3579710 DOI: 10.1186/1475-2840-12-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/14/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB), up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs). METHODS Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα), protein kinase Cβ2 (PKCβ2), and phosphorylation of PKCβ2 (Ser(660)) were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O(2)(.-)) accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. RESULTS High glucose induced the expression of endothelial selectin (E-selectin), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and increased mononuclear-endothelial adhesion. High glucose induced O(2)(.-) accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. CONCLUSION Propofol, via decreasing O(2)(.-) accumulation, down-regulating PKCβ2 Ser(660) phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression and mononuclear-endothelial adhesion.
Collapse
Affiliation(s)
- Minmin Zhu
- Department of Anaesthesiology and Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Centre, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Propofol attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production through p38 MAPK and SAPK/JNK in alveolar epithelial cells. J Anesth 2012; 27:366-73. [DOI: 10.1007/s00540-012-1539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
|
24
|
Lin MC, Chen CL, Yang TT, Choi PC, Hsing CH, Lin CF. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo. Toxicol Appl Pharmacol 2012; 265:253-62. [DOI: 10.1016/j.taap.2012.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
|
26
|
Chen J, Chen W, Zhu M, Zhu Y, Yin H, Tan Z. Propofol attenuates angiotensin II-induced apoptosis in human coronary artery endothelial cells. Br J Anaesth 2011; 107:525-32. [DOI: 10.1093/bja/aer197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|