1
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
2
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jeon BJ, Kwon DH, Gim GM, Kim HK, Lee JH, Jang G. Stable long-term germline transmission of GFP transgenic rat via PiggyBac transposon mediated gene transfer. BMC Vet Res 2024; 20:275. [PMID: 38918814 PMCID: PMC11201299 DOI: 10.1186/s12917-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.
Collapse
Affiliation(s)
- Beom-Jin Jeon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | | | - Hee-Kyoung Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- LARTBio Incorp, Gyeonggi-Do, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea.
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
4
|
Ozoe Y, Nakao T, Kondo S, Yoshioka Y, Ozoe F, Banba S. Knock-in mutagenesis in Drosophila Rdl underscores the critical role of the conserved M3 glycine in mediating the actions of broflanilide and isocycloseram on GABA receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105776. [PMID: 38458683 DOI: 10.1016/j.pestbp.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
γ-Aminobutyric acid receptors (GABARs) are crucial targets for pest control chemicals, including meta-diamide and isoxazoline insecticides, which act as negative allosteric modulators of insect GABARs. Previous cell-based assays have indicated that amino acid residues in the transmembrane cavity between adjacent subunits of Drosophila RDL GABAR (i.e., Ile276, Leu280, and Gly335) are involved in mediating the action of meta-diamides. In this study, to confirm this result at the organismal level, we employed CRISPR/Cas9-mediated genome editing, generated six transgenic Drosophila strains carrying substitutions in these amino acid residues, and investigated their sensitivity to broflanilide and isocycloseram. Flies homozygous for the I276F mutation did not exhibit any change in sensitivity to the tested insecticides compared to the control flies. Conversely, I276C homozygosity was lethal, and heterozygous flies exhibited ∼2-fold lower sensitivity to broflanilide than the control flies. Flies homozygous for the L280C mutation survived into adulthood but exhibited infertility. Both heterozygous and homozygous L280C flies exhibited ∼3- and ∼20-fold lower sensitivities to broflanilide and isocycloseram, respectively, than the control flies. The reduction in sensitivity to isocycloseram in L280C flies diminished to ∼3-fold when treated with piperonyl butoxide. Flies homozygous for the G335A mutation reached the adult stage. However, they were sterile, had small bodies, and exhibited reduced locomotion, indicating the critical role of Gly335 in RDL function. These flies exhibited markedly increased tolerance to topically applied broflanilide and isocycloseram, demonstrating that the conserved Gly335 is the target of the insecticidal actions of broflanilide and isocycloseram. Considering the significant fitness costs, the Gly335 mutation may not pose a serious risk for the development of resistance in field populations of insect pests. However, more careful studies using insect pests are needed to investigate whether our perspective applies to resistance development under field conditions.
Collapse
Affiliation(s)
- Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan.
| | - Toshifumi Nakao
- Agrochemicals Research Center, Mitsui Chemicals Crop and Life Solutions, Inc, Mobara, Chiba 297-0017, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan; Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhide Yoshioka
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan; Interdisciplinary Institute for Science Research, Organization for Research and Academic Information, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Crop and Life Solutions, Inc, Mobara, Chiba 297-0017, Japan.
| |
Collapse
|
5
|
Li L, Zuo Y, Shi Y, Yang Y, Wu Y. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104042. [PMID: 38030045 DOI: 10.1016/j.ibmb.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Lannes L, Furman CM, Hickman AB, Dyda F. Zinc-finger BED domains drive the formation of the active Hermes transpososome by asymmetric DNA binding. Nat Commun 2023; 14:4470. [PMID: 37491363 PMCID: PMC10368747 DOI: 10.1038/s41467-023-40210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
The Hermes DNA transposon is a member of the eukaryotic hAT superfamily, and its transposase forms a ring-shaped tetramer of dimers. Our investigation, combining biochemical, crystallography and cryo-electron microscopy, and in-cell assays, shows that the full-length Hermes octamer extensively interacts with its transposon left-end through multiple BED domains of three Hermes protomers contributed by three dimers explaining the role of the unusual higher-order assembly. By contrast, the right-end is bound to no BED domains at all. Thus, this work supports a model in which Hermes multimerizes to gather enough BED domains to find its left-end among the abundant genomic DNA, facilitating the subsequent interaction with the right-end.
Collapse
Affiliation(s)
- Laurie Lannes
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher M Furman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
8
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
9
|
Lu F, Ren Y, Ding L, Lu J, Zhou X, Liu H, Wang N, Cai M. Minos and Restless transposon insertion mutagenesis of psychrotrophic fungus for red pigment synthesis adaptive to normal temperature. BIORESOUR BIOPROCESS 2022; 9:118. [PMID: 38647871 PMCID: PMC10992017 DOI: 10.1186/s40643-022-00604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The polar psychrotrophic fungus Geomyces sp. WNF-15A can produce high-quality natural red pigment for the potential use as edible pigment. However, it shows low-temperature-dependent synthesis of red pigment, which limits its large-scale industrial applications due to the difficult and high-cost bioprocess control. This study aims to develop transposon-mediated mutagenesis methods to generate mutants that are able to synthesize red pigment at normal temperature. Four transposable systems, including single and dual transposable systems, were established in this fungus based on the Minos from Drosophila hydei and the Restless from Tolypocladium inflatum. A total of 23 production-dominant mutants and 12 growth-dominant mutants were thus obtained by constructed transposable systems. At 14 °C and 20 °C, the MPS1 mutant strain achieved the highest level of red pigment (OD520 of 43.3 and 29.7, respectively), which was increased by 78.4% and 128.7% compared to the wild-type, respectively. Of note, 4 mutants (MPS1, MPS3, MPS4 and MPD1) successfully synthesized red pigment (OD520 of 5.0, 5.3, 4.7 and 4.9, respectively) at 25 °C, which broke the limit of the wild-type production under normal temperature. Generally, the dual transposable systems of Minos and Restless were more efficient than their single transposable systems for mutagenesis in this fungus. However, the positive mutation ratios were similar between the dual and single transposable systems for either Minos or Restless. This study provides alternative tools for genetic mutagenesis breeding of fungi from extreme environments.
Collapse
Affiliation(s)
- Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd, Unit 601, Building No. 2, YESUN Intelligent Community III, Guanlan Street, Shenzhen, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharma Co., Ltd, 78 E-Jiao Street, Liaocheng, 252201, Shandong, China
| | - Nengfei Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
11
|
Li H, Prever L, Hsu MY, Lo W, Margaria JP, De Santis MC, Zanini C, Forni M, Novelli F, Pece S, Di Fiore PP, Porporato PE, Martini M, Belabed H, Nazare M, Haucke V, Gulluni F, Hirsch E. Phosphoinositide Conversion Inactivates R-RAS and Drives Metastases in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103249. [PMID: 35098698 PMCID: PMC8948670 DOI: 10.1002/advs.202103249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Indexed: 05/05/2023]
Abstract
Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.
Collapse
Affiliation(s)
- Huayi Li
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Myriam Y. Hsu
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Wen‐Ting Lo
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Cristina Zanini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Marco Forni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Salvatore Pece
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Pier Paolo Di Fiore
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Hassane Belabed
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Marc Nazare
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Volker Haucke
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
- Faculty of Biology, Chemistry and PharmacyFreie Universität BerlinBerlin14195Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| |
Collapse
|
12
|
Khayeka-Wandabwa C, Zhao J, Pathak JL, Wu H, Bureik M. Upregulation of estrogen receptor alpha (ERα) expression in transgenic mice expressing human CYP4Z1. Breast Cancer Res Treat 2021; 191:319-326. [PMID: 34725776 DOI: 10.1007/s10549-021-06435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE CYP4Z1 is a human cytochrome P450 enzyme involved in breast cancer progression and prognosis, but its functional role in these processes is not understood. In order to gain more insight into CYP4Z1's properties it was recombinantly expressed in a host animal that does not have an endogenous homologue. METHODS We generated a transgenic mouse model that specifically expresses human CYP4Z1 in breast tissue under the control of the whey acidic protein promoter. Complementary experiments were done using cell lines derived from human breast cell. RESULTS Induction of CYP4Z1 expression led to reduction of body weight, activity, and birth rates. Histological analysis revealed no evidence for tumor formation. However, a strong increase in estrogen receptor alpha was observed by immunohistochemistry; weaker but significantly increased immunoreactivity was also detected for collagen I and fibronectin. Overexpression of CYP4Z1 in the human breast cancer cell line MCF7 also led to increased ERα expression. Moreover, increased expression of both CYP4Z1 and ERα was observed in MCF-10A normal breast cells upon cocultivation with MCF-7 cells (with or without overexpression of CYP4Z1). CONCLUSION These data suggest that CYP4Z1 facilitates breast cancer development by induction of ERα expression via an as yet undefined mechanism.
Collapse
Affiliation(s)
| | - Jie Zhao
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China
| | - Janak L Pathak
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China.,Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiyuan Wu
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin, China.
| |
Collapse
|
13
|
Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies. Front Oncol 2021; 11:720501. [PMID: 34422667 PMCID: PMC8377427 DOI: 10.3389/fonc.2021.720501] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
The approval of CD19 chimeric antigen receptor (CAR)-engineered T (CAR-T) cell products in B-cell malignancies represents a breakthrough in CAR-T cell immunotherapy. However, the remaining limitations concerning the graft-versus-host disease (GVHD) and other adverse effects (e.g., cytokine release syndromes [CRS] and neurotoxicity) still restrict their wider applications. Natural killer (NK) cells have been identified as promising candidates for CAR-based cellular immunotherapy because of their unique characteristics. No HLA-matching restriction and abundant sources make CAR-engineered NK (CAR-NK) cells potentially available to be off-the-shelf products that could be readily available for immediate clinical use. Therefore, researchers have gradually shifted their focus from CAR-T cells to CAR-NK cells in hematological malignancies. This review discusses the current status and applications of CAR-NK cells in hematological malignancies, as well as the unique advantages of CAR-NK cells compared with CAR-T cells. It also discusses challenges and prospects regarding clinical applications of CAR-NK cells.
Collapse
Affiliation(s)
- Hui Lu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziying Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Tay JC, Wang J, Du Z, Ng YY, Li Z, Ren Y, Zhang C, Zhu J, Xu XH, Wang S. Manufacturing NKG2D CAR-T cells with piggyBac transposon vectors and K562 artificial antigen-presenting cells. Mol Ther Methods Clin Dev 2021; 21:107-120. [PMID: 33816644 PMCID: PMC8005737 DOI: 10.1016/j.omtm.2021.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022]
Abstract
Non-viral platforms can be applied rapidly and cost-effectively for chimeric antigen receptor (CAR)-T cell manufacturing. In the present paper, we describe in detail a clinically relevant manufacturing process for NKG2D CAR-T cells through electroporation of CAR-encoding piggyBac transposon plasmids and in vitro expansion with K562 artificial antigen-presenting cells. With an optimized protocol, we generated the final cell therapy products with 89.2% ± 10.2% NKG2D CAR-positive cells and achieved the corresponding antigen-dependent expansion between 50,000 and 60,000 folds within 4 weeks. To facilitate repeated CAR-T cell infusions, we evaluated the practicality of cryopreservation followed by post-thaw expansion and an extended manufacturing process for up to 9 rounds of weekly K562 cell stimulation. We found that neither compromised the in vitro anti-tumor activity of NKG2D CAR-T cells. Interestingly, the expression of T cell exhaustion markers TIGIT, TIM3, and LAG3 was reduced with extended manufacturing. To enhance the safety profile of the NKG2D CAR-T cells, we incorporated a full-length CD20 transgene in tandem with the CAR construct and demonstrated that autologous NK cells could mediate efficient antibody-dependent cell-mediated cytotoxicity to remove these CAR-T cells. Collectively, our study illustrates a protocol that generates large numbers of efficacious NKG2D CAR-T cells suitable for multiple rounds of infusions.
Collapse
Affiliation(s)
- Johan C.K. Tay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Junjian Wang
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yuefang Ren
- Department of Gynaecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Chang Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Jianqing Zhu
- Department of Gynaecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
15
|
Ciuman RR. Understanding Human Body Maintenance, Protection, and Modification: Antibodies, Genetics, Stem Cells and Connected Artificial Intelligence Applications—Where Are We? Health (London) 2021. [DOI: 10.4236/health.2021.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59:102975. [PMID: 32853984 PMCID: PMC7452675 DOI: 10.1016/j.ebiom.2020.102975] [Citation(s) in RCA: 472] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Natural Killer (NK) cells and CD8+ cytotoxic T cells are two types of immune cells that can kill target cells through similar cytotoxic mechanisms. With the remarkable success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells for treating haematological malignancies, there is a rapid growing interest in developing CAR-engineered NK (CAR-NK) cells for cancer therapy. Compared to CAR-T cells, CAR-NK cells could offer some significant advantages, including: (1) better safety, such as a lack or minimal cytokine release syndrome and neurotoxicity in autologous setting and graft-versus-host disease in allogenic setting, (2) multiple mechanisms for activating cytotoxic activity, and (3) high feasibility for 'off-the-shelf' manufacturing. CAR-NK cells could be engineered to target diverse antigens, enhance proliferation and persistence in vivo, increase infiltration into solid tumours, overcome resistant tumour microenvironment, and ultimately achieve an effective anti-tumour response. In this review, we focus on recent progress in genetic engineering and clinical application of CAR-NK cells, and discuss current challenges and future promise of CAR-NK cells as a novel cellular immunotherapy in cancer.
Collapse
|
17
|
Li X, Wang L, Su Q, Ye L, Zhou X, Song D, Huang D. Highly Proliferative Immortalized Human Dental Pulp Cells Retain the Odontogenic Phenotype when Combined with a Beta-Tricalcium Phosphate Scaffold and BMP2. Stem Cells Int 2020; 2020:4534128. [PMID: 32148517 PMCID: PMC7044479 DOI: 10.1155/2020/4534128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Human dental pulp cells (HDPCs) play a vital role in dentin formation and reparative dentinogenesis, which indicated their potential application in regenerative medicine. However, HDPCs, which can only be obtained from scarce human pulp tissues, also have a limited lifespan in vitro, and stem cells usually lose their original characteristics over a large number of passages. To overcome these challenges, we successfully immortalized human dental pulp cells using the piggyBac system which was employed to efficiently overexpress the SV40 T-Ag, and we then comprehensively described the cell biological behavior. The immortalized human dental pulp cells (iHDPCs) acquired long-term proliferative activity and expressed most HDPC markers. The iHDPCs maintained multiple differentiation potential and could be induced to differentiate into chondrogenic, osteogenic, and adipogenic cells in vitro. We also proved that the iHDPCs gained a stronger ability to migrate than the primary cells, while apoptosis was inhibited. Furthermore, highly proliferative iHDPCs displayed no oncogenicity when subcutaneously implanted into athymic nude mice. Finally, iHDPCs exhibited odontogenic differentiation ability and secreted dentin sialophosphoprotein (DSPP) when combined with a beta-tricalcium phosphate scaffold and bone morphogenetic protein-2 (BMP2) in vivo. Conclusively, the established iHDPCs are a valuable resource for mechanistic study of dental pulp cell differentiation and dental pulp injury repair, as well as for applications in tooth regeneration.
Collapse
Affiliation(s)
- Xiangfen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Kudo A, Awasaki T, Ishikawa Y, Matsuo T. piggyBac- and phiC31 integrase-mediated transgenesis in Drosophila prolongata. Genes Genet Syst 2018; 92:277-285. [PMID: 29151455 DOI: 10.1266/ggs.17-00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of transgenesis systems in non-model organisms provides a powerful tool for molecular analysis and contributes to the understanding of phenomena that are not observed in model organisms. Drosophila prolongata is a fruit fly that has unique morphology and behavior not found in other Drosophila species including D. melanogaster. In this study, we developed a phiC31 integrase-mediated transgenesis system for D. prolongata. First, using piggyBac-mediated transgenesis, 37 homozygous attP strains were established. These strains were further transformed with the nosP-Cas9 vector, which was originally designed for phiC31-mediated transgenesis in D. melanogaster. The transformation rate varied from 0% to 3.4%. Nine strains with a high transformation rate of above 2.0% were established, which will serve as host strains in future transformation experiments in D. prolongata. Our results demonstrate that genetic tools developed for D. melanogaster are applicable to D. prolongata with minimal modifications.
Collapse
Affiliation(s)
- Ayumi Kudo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | | | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| |
Collapse
|
20
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
21
|
Iyer PS, Mavoungou LO, Ronzoni F, Zemla J, Schmid-Siegert E, Antonini S, Neff LA, Dorchies OM, Jaconi M, Lekka M, Messina G, Mermod N. Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Mol Ther 2018; 26:1093-1108. [PMID: 29503200 PMCID: PMC6079556 DOI: 10.1016/j.ymthe.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.
Collapse
Affiliation(s)
- Pavithra S Iyer
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Lionel O Mavoungou
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland
| | - Flavio Ronzoni
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna Zemla
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Marisa Jaconi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | | | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
Ahmadi S, Davami F, Davoudi N, Nematpour F, Ahmadi M, Ebadat S, Azadmanesh K, Barkhordari F, Mahboudi F. Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design. PLoS One 2017; 12:e0179902. [PMID: 28662065 PMCID: PMC5491063 DOI: 10.1371/journal.pone.0179902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios.
Collapse
Affiliation(s)
- Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Noushin Davoudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ahmadi
- Medical Biotechnology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
23
|
Denduluri SK, Scott B, Lamplot JD, Yin L, Yan Z, Wang Z, Ye J, Wang J, Wei Q, Mohammed MK, Haydon RC, Kang RW, He TC, Athiviraham A, Ho SH, Shi LL. Immortalized Mouse Achilles Tenocytes Demonstrate Long-Term Proliferative Capacity While Retaining Tenogenic Properties. Tissue Eng Part C Methods 2016; 22:280-9. [PMID: 26959762 DOI: 10.1089/ten.tec.2015.0244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating the cellular processes underlying tendon healing can allow researchers to improve long-term outcomes after injury. However, conducting meaningful studies to uncover the injury healing mechanism at cellular and molecular levels remains challenging. This is due to the inherent difficulty in isolating, culturing, and expanding sufficient primary tenocytes, due to their limited proliferative capacity and short lifespan. In this study, we sought to establish a novel line of immortalized mouse Achilles tenocytes (iMATs) with primary tenocyte properties, but increased proliferative capacity suitable for extensive in vitro experimentation. We show that isolated primary mouse Achilles tenocytes (pMATs) can be effectively immortalized using a piggyBac transposon expressing SV40 large T antigen flanked by FLP recombination target site (FRT). The resulting iMATs exhibit markedly greater proliferation and survival, which can be reversed with FLP recombinase. Furthermore, iMATs express the same set of tendon-specific markers as that of primary cells, although in lower levels, and respond similarly to exogenous stimulation with bone morphogenetic protein 13 (BMP13) as has been previously reported with pMATs. Taken together, our results suggest that iMATs acquire long-term proliferative capacity while maintaining tenogenic properties. We believe that iMATs are a suitable model for studying not only the native cellular processes involved in injury and healing, but also potential therapeutic agents that may augment the stability of tendon repair.
Collapse
Affiliation(s)
- Sahitya K Denduluri
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Bryan Scott
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Joseph D Lamplot
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Liangjun Yin
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois.,2 Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing, China
| | - Zhengjian Yan
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois.,2 Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing, China
| | - Zhongliang Wang
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois.,2 Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing, China
| | - Jixing Ye
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jing Wang
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois.,2 Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing, China
| | - Qiang Wei
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois.,2 Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University , Chongqing, China
| | - Maryam K Mohammed
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Rex C Haydon
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Richard W Kang
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Tong-Chuan He
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Aravind Athiviraham
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Sherwin H Ho
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Lewis L Shi
- 1 Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Pritzker School of Medicine , Chicago, Illinois
| |
Collapse
|
24
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
25
|
Gregory M, Alphey L, Morrison NI, Shimeld SM. Insect transformation with piggyBac: getting the number of injections just right. INSECT MOLECULAR BIOLOGY 2016; 25:259-271. [PMID: 27027400 PMCID: PMC4982070 DOI: 10.1111/imb.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The insertion of exogenous genetic cargo into insects using transposable elements is a powerful research tool with potential applications in meeting food security and public health challenges facing humanity. piggyBac is the transposable element most commonly utilized for insect germline transformation. The described efficiency of this process is variable in the published literature, and a comprehensive review of transformation efficiency in insects is lacking. This study compared and contrasted all available published data with a comprehensive data set provided by a biotechnology group specializing in insect transformation. Based on analysis of these data, with particular focus on the more complete observational data from the biotechnology group, we designed a decision tool to aid researchers' decision-making when using piggyBac to transform insects by microinjection. A combination of statistical techniques was used to define appropriate summary statistics of piggyBac transformation efficiency by species and insect order. Publication bias was assessed by comparing the data sets. The bias was assessed using strategies co-opted from the medical literature. The work culminated in building the Goldilocks decision tool, a Markov-Chain Monte-Carlo simulation operated via a graphical interface and providing guidance on best practice for those seeking to transform insects using piggyBac.
Collapse
Affiliation(s)
- M Gregory
- Department of Zoology, University of Oxford, Oxford, UK
- Oxitec Ltd, Abingdon, UK
| | - L Alphey
- Department of Zoology, University of Oxford, Oxford, UK
- Oxitec Ltd, Abingdon, UK
- The Pirbright Institute, Pirbright, Surrey, UK
| | | | - S M Shimeld
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Zhao S, Jiang E, Chen S, Gu Y, Shangguan AJ, Lv T, Luo L, Yu Z. PiggyBac transposon vectors: the tools of the human gene encoding. Transl Lung Cancer Res 2016; 5:120-5. [PMID: 26958506 DOI: 10.3978/j.issn.2218-6751.2016.01.05] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A transposon is a DNA segment, which is able to change its relative position within the entire genome of a cell. The piggyBac (PB) transposon is a movable genetic element that efficiently transposes between vectors and chromosomes through a "cut-and-paste" mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeats (ITRs) sequences located on both ends of the transposon vector and eight efficiently moves the contents from its original positions and efficiently integrates them into TTAA chromosomal sites. PB has drawn much attention because of its transposition efficiency, safety and stability. Due to its priorities, PB can be used as a new genetic vehicle, a new tool for oncogene screening and a new method for gene therapy. PB has created a new outlook for human gene encoding.
Collapse
Affiliation(s)
- Shuang Zhao
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Enze Jiang
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Shuangshuang Chen
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Yuan Gu
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Anna Junjie Shangguan
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Tangfeng Lv
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Liguo Luo
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Zhenghong Yu
- 1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 3 Shanghai Medical College of Fudan University, Shanghai 20032, China ; 4 Weinberg College of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 5 Department of Respiratory Medicine, 6 Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
27
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
28
|
Hildebrand L, Seemann P, Kurtz A, Hecht J, Contzen J, Gossen M, Stachelscheid H. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses. Cell Mol Life Sci 2015; 72:4671-80. [PMID: 26109426 PMCID: PMC11113433 DOI: 10.1007/s00018-015-1957-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.
Collapse
Affiliation(s)
- Laura Hildebrand
- Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Petra Seemann
- Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Andreas Kurtz
- Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jochen Hecht
- Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Contzen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow, Germany
| | - Harald Stachelscheid
- Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Berlin Institute of Health-Stem Cell Core Facility, Berlin, Germany.
| |
Collapse
|
29
|
Bourgeois A, Esteves de Lima J, Charvet B, Kawakami K, Stricker S, Duprez D. Stable and bicistronic expression of two genes in somite- and lateral plate-derived tissues to study chick limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:39. [PMID: 26518454 PMCID: PMC4628273 DOI: 10.1186/s12861-015-0088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022]
Abstract
Background Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral-plate-derived tissues (skeletal components and attachments) during limb development is missing. Results We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co-expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. Conclusion Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development.
Collapse
Affiliation(s)
- Adeline Bourgeois
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Joana Esteves de Lima
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| | - Benjamin Charvet
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan.
| | - Sigmar Stricker
- Institue for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195, Berlin, Germany.
| | - Delphine Duprez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005, Paris, France. .,Inserm U1156, F-75005, Paris, France.
| |
Collapse
|
30
|
Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, Zheng L, Deng F. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS One 2015; 10:e0130937. [PMID: 26172849 PMCID: PMC4501788 DOI: 10.1371/journal.pone.0130937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are the precursor cells of periodontium. Under certain differentiation conditions, DFCs can be induced to differentiate into chondrogenic, osteogenic and adipogenic cells. However, DFCs has limited lifespan in vitro, so it's difficult to harvest enough cells for basic research and translational application. pMPH86 is a piggyBac transposon-mediated vector which contains SV40 T-Ag cassette that can be removed by flippase recognition target (FRT) recombinase. Here we demonstrated the pMPH86 can effectively amplify human DFCs through reversible immortalization. The immortalized DFCs (iDFCs) exhibit higher proliferate activity, which can be reversed to its original level before immortalization when deimmortalized by FLP recombinase. The iDFCs and deimmortalized DFCs (dDFCs) express most DFC markers and maintain multiple differentiation potential in vitro as they can be induced by BMP9 to differentiate into chondrogenic, osteogenic and adipogenic cells evidenced by gene expression and protein marker. We also proved telomerase activity of iDFCs are significantly increased and maintained at a high level, while the telomerase activity of primary DFCs was relatively low and decreased with every passage. After SV40 T-Ag was removed to deimmortalize the cells, telomerase activity was reduced to its original level before immortalization and decreased with passages just the same as primary DFCs. These results suggest that piggyBac immortalization system could be a potential strategy to amplify primary cells, which is critical for regenerative research and further clinical application.
Collapse
Affiliation(s)
- Yan Wu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Ge Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Jinlin Song
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Yong Yu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Leilei Zheng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Feng Deng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
31
|
Mykles DL, Hui JHL. Neocaridina denticulata: A Decapod Crustacean Model for Functional Genomics. Integr Comp Biol 2015; 55:891-7. [DOI: 10.1093/icb/icv050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Chen X, Cui J, Yan Z, Zhang H, Chen X, Wang N, Shah P, Deng F, Zhao C, Geng N, Li M, Denduluri SK, Haydon RC, Luu HH, Reid RR, He TC. Sustained high level transgene expression in mammalian cells mediated by the optimized piggyBac transposon system. Genes Dis 2015; 2:96-105. [PMID: 25815368 PMCID: PMC4372205 DOI: 10.1016/j.gendis.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sustained, high level transgene expression in mammalian cells is desired in many cases for studying gene functions. Traditionally, stable transgene expression has been accomplished by using retroviral or lentiviral vectors. However, such viral vector-mediated transgene expression is often at low levels and can be reduced over time due to low copy numbers and/or chromatin remodeling repression. The piggyBac transposon has emerged as a promising non-viral vector system for efficient gene transfer into mammalian cells. Despite its inherent advantages over lentiviral and retroviral systems, piggyBac system has not been widely used, at least in part due to their limited manipulation flexibilities. Here, we seek to optimize piggyBac-mediated transgene expression and generate a more efficient, user-friendly piggyBac system. By engineering a panel of versatile piggyBac vectors and constructing recombinant adenoviruses expressing piggyBac transposase (PBase), we demonstrate that adenovirus-mediated PBase expression significantly enhances the integration efficiency and expression level of transgenes in mesenchymal stem cells and osteosarcoma cells, compared to that obtained from co-transfection of the CMV-PBase plasmid. We further determine the drug selection timeline to achieve optimal stable transgene expression. Moreover, we demonstrate that the transgene copy number of piggyBac-mediated integration is approximately 10 times higher than that mediated by retroviral vectors. Using the engineered tandem expression vector, we show that three transgenes can be simultaneously expressed in a single vector with high efficiency. Thus, these results strongly suggest that the optimized piggyBac system is a valuable tool for making stable cell lines with sustained, high transgene expression.
Collapse
Affiliation(s)
- Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Department of Pediatric Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Department of Laboratory Medicine, the Affiliated Hospitals of Qingdao University, Qingdao, China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Departments of Oncology, Cell Biology and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Palak Shah
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Departments of Oncology, Cell Biology and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Departments of Oncology, Cell Biology and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Nisha Geng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Sahitya K Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Section of Plastic & Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA ; Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Johnson ET, Dowd PF. A non-autonomous insect piggyBac transposable element is mobile in tobacco. Mol Genet Genomics 2014; 289:895-902. [PMID: 24858840 DOI: 10.1007/s00438-014-0860-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.
Collapse
Affiliation(s)
- Eric T Johnson
- Crop Bioprotection Research, USDA ARS, 1815 N. University St, Peoria, IL, 61604, USA,
| | | |
Collapse
|
34
|
Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep 2014; 42:19-25. [DOI: 10.1007/s11033-014-3735-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/10/2014] [Indexed: 01/13/2023]
|
35
|
Hu K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev 2014; 23:1301-15. [PMID: 24625220 PMCID: PMC4046209 DOI: 10.1089/scd.2013.0621] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10-30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
36
|
Wang N, Zhang W, Cui J, Zhang H, Chen X, Li R, Wu N, Chen X, Wen S, Zhang J, Yin L, Deng F, Liao Z, Zhang Z, Zhang Q, Yan Z, Liu W, Ye J, Deng Y, Wang Z, Qiao M, Luu HH, Haydon RC, Shi LL, Liang H, He TC. The piggyBac transposon-mediated expression of SV40 T antigen efficiently immortalizes mouse embryonic fibroblasts (MEFs). PLoS One 2014; 9:e97316. [PMID: 24845466 PMCID: PMC4028212 DOI: 10.1371/journal.pone.0097316] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 04/19/2014] [Indexed: 12/29/2022] Open
Abstract
Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, the Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ningning Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Sheng Wen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, Xiang-Ya Hospital of Central South University, Changsha, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (HL); (TCH)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- * E-mail: (HL); (TCH)
| |
Collapse
|
37
|
Wen S, Zhang H, Li Y, Wang N, Zhang W, Yang K, Wu N, Chen X, Deng F, Liao Z, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Zhou G, Luu HH, Haydon RC, Shi LL, He TC, Wei G. Characterization of constitutive promoters for piggyBac transposon-mediated stable transgene expression in mesenchymal stem cells (MSCs). PLoS One 2014; 9:e94397. [PMID: 24714676 PMCID: PMC3979777 DOI: 10.1371/journal.pone.0094397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.
Collapse
Affiliation(s)
- Sheng Wen
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Yasha Li
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Departments of Cell Biology and Oncology of the Affiliated Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ningning Wu
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Departments of Cell Biology and Oncology of the Affiliated Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, China
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Qian Zhang
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Guolin Zhou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (GW)
| | - Guanghui Wei
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (GW)
| |
Collapse
|
38
|
Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin Cell Dev Biol 2014; 27:86-95. [PMID: 24468652 DOI: 10.1016/j.semcdb.2014.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
The genetic complexity and heterogeneity of cancer has posed a problem in designing rationally targeted therapies effective in a large proportion of human cancer. Genomic characterization of many cancer types has provided a staggering amount of data that needs to be interpreted to further our understanding of this disease. Forward genetic screening in mice using Sleeping Beauty (SB) based insertional mutagenesis is an effective method for candidate cancer gene discovery that can aid in distinguishing driver from passenger mutations in human cancer. This system has been adapted for unbiased screens to identify drivers of multiple cancer types. These screens have already identified hundreds of candidate cancer-promoting mutations. These can be used to develop new mouse models for further study, which may prove useful for therapeutic testing. SB technology may also hold the key for rapid generation of reverse genetic mouse models of cancer, and has already been used to model glioblastoma and liver cancer.
Collapse
|
39
|
Ciuman RR. Inner ear symptoms and disease: pathophysiological understanding and therapeutic options. Med Sci Monit 2013; 19:1195-210. [PMID: 24362017 PMCID: PMC3872449 DOI: 10.12659/msm.889815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022] Open
Abstract
In recent years, huge advances have taken place in understanding of inner ear pathophysiology causing sensorineural hearing loss, tinnitus, and vertigo. Advances in understanding comprise biochemical and physiological research of stimulus perception and conduction, inner ear homeostasis, and hereditary diseases with underlying genetics. This review describes and tabulates the various causes of inner ear disease and defines inner ear and non-inner ear causes of hearing loss, tinnitus, and vertigo. The aim of this review was to comprehensively breakdown this field of otorhinolaryngology for specialists and non-specialists and to discuss current therapeutic options in distinct diseases and promising research for future therapies, especially pharmaceutic, genetic, or stem cell therapy.
Collapse
|
40
|
Pyykkö I, Zou J, Zhang Y, Zhang W, Feng H, Kinnunen P. Nanoparticle based inner ear therapy. World J Otorhinolaryngol 2013; 3:114-133. [DOI: 10.5319/wjo.v3.i4.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Synthetic nanoparticles can be used to carry drugs, genes, small interfering RNA (siRNA) and growth factors into the inner ear, to repair, restore and induce cellular regeneration. Nanoparticles (NPs) have been developed which are targetable to selected tissue, traceable in vivo, and equipped with controlled drug/gene release. The NPs are coated with a ‘stealth’ layer, and decorated with targeting ligands, markers, transfection agents and endosomal escape peptides. As payloads, genes such as the BDNF-gene, Math1-gene and Prestin-gene have been constructed and delivered in vitro. Short-hairpin RNA has been used in vitro to silence the negative regulator of Math1, the inhibitors of differentiation and DNA binding. In order to facilitate the passage of cargo from the middle ear to the inner ear, the oval window transports gadolinium chelate more efficiently than the round window and is the key element in introducing therapeutic agents into the vestibule and cochlea. Depending upon the type of NPs, different migration and cellular internalization pathways are employed, and optimal carriers should be designed depending on the cargo. The use of NPs as drug/gene/siRNA carriers is fascinating and can also be used as an intraoperative adjunct to cochlear implantation to attract the peripheral processes of the cochlear nerve.
Collapse
|
41
|
Katsuyama T, Akmammedov A, Seimiya M, Hess SC, Sievers C, Paro R. An efficient strategy for TALEN-mediated genome engineering in Drosophila. Nucleic Acids Res 2013; 41:e163. [PMID: 23877243 PMCID: PMC3783190 DOI: 10.1093/nar/gkt638] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In reverse genetics, a gene’s function is elucidated through targeted modifications in the coding region or associated DNA cis-regulatory elements. To this purpose, recently developed customizable transcription activator-like effector nucleases (TALENs) have proven an invaluable tool, allowing introduction of double-strand breaks at predetermined sites in the genome. Here we describe a practical and efficient method for the targeted genome engineering in Drosophila. We demonstrate TALEN-mediated targeted gene integration and efficient identification of mutant flies using a traceable marker phenotype. Furthermore, we developed an easy TALEN assembly (easyT) method relying on simultaneous reactions of DNA Bae I digestion and ligation, enabling construction of complete TALENs from a monomer unit library in a single day. Taken together, our strategy with easyT and TALEN-plasmid microinjection simplifies mutant generation and enables isolation of desired mutant fly lines in the F1 generation.
Collapse
Affiliation(s)
- Tomonori Katsuyama
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstrasse 26, 4058 Basel, Switzerland and Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc Natl Acad Sci U S A 2012; 110:E478-87. [PMID: 23091042 DOI: 10.1073/pnas.1121543109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromosome structure and function are influenced by transposable elements, which are mobile DNA segments that can move from place to place. hAT elements are a superfamily of DNA cut and paste elements that move by excision and integration. We have characterized two hAT elements, TcBuster and Space Invaders (SPIN), that are members of a recently described subfamily of hAT elements called Buster elements. We show that TcBuster, from the red flour beetle Tribolium castaneum, is highly active in human cells. SPIN elements are currently inactive elements that were recently highly active in multiple vertebrate genomes, and the high level of sequence similarity across widely diverged species and patchy phylogenetic distribution suggest that they may have moved between genomes by horizontal transfer. We have generated an intact version of this element, SPIN(ON), which is highly active in human cells. In vitro analysis of TcBuster and SPIN(ON) shows that no proteins other than transposase are essential for recombination, a property that may contribute to the ability of SPIN to successfully invade multiple organisms. We also analyze the target site preferences of de novo insertions in the human genome of TcBuster and SPIN(ON) and compare them with the preferences of Sleeping Beauty and piggyBac, showing that each superfamily has a distinctive pattern of insertion. The high-frequency transposition of both TcBuster and SPIN(ON) suggests that these transposon systems offer powerful tools for genome engineering. Finally, we describe a Saccharomyces cerevisiae assay for TcBuster that will provide a means for isolation of hyperactive and other interesting classes of transposase mutants.
Collapse
|
43
|
Remnant living cells that escape cell loss in late-stage tumors exhibit cancer stem cell-like characteristics. Cell Death Dis 2012; 3:e399. [PMID: 23034334 PMCID: PMC3481124 DOI: 10.1038/cddis.2012.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo.
Collapse
|
44
|
Nanoparticle-based delivery for the treatment of inner ear disorders. Curr Opin Otolaryngol Head Neck Surg 2012; 19:388-96. [PMID: 21897248 DOI: 10.1097/moo.0b013e32834aa3a8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The delivery of targetable synthetic vectors that can carry a variety of drugs, proteins, and nucleic acids, such as DNA and small interfering RNA (siRNA), to mammalian cells is important as a potential therapeutic system that avoids the problems that are associated with viruses. RECENT FINDINGS The so-called multifunctional nanocarriers that are equipped with several functions, such as targetability, shelter from the immune system, and opsonization, and are capable of delivering payload across the nuclear envelope, have been synthesized. To improve transfection efficiency, a group of novel peptides have been attached to the surface of the carrier that will enhance endosomal escape and promote nuclear entry. The targeting of tropomyocin receptor kinase B (TrkB) with ligands enhances uptake in spiral ganglion cell culture. Treatment cargos have included growth factors such as the Math-1 gene, short hairpin RNA, and steroids. The problems with current synthetic nanocarriers are poorer selectivity, internalization, and transfection rate compared with viral vectors. SUMMARY Within a few years, when the synthetic vectors have been optimized, the first human drugs/proteins/gene product-based therapies will become available in a phase I study.
Collapse
|
45
|
Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O. Vertical Evolution and Horizontal Transfer of CR1 Non-LTR Retrotransposons and Tc1/mariner DNA Transposons in Lepidoptera Species. Mol Biol Evol 2012; 29:3685-702. [DOI: 10.1093/molbev/mss181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
46
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
47
|
Garrels W, Ivics Z, Kues WA. Precision genetic engineering in large mammals. Trends Biotechnol 2012; 30:386-93. [DOI: 10.1016/j.tibtech.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022]
|
48
|
Mendenhall A, Lesnik J, Mukherjee C, Antes T, Sengupta R. Packaging HIV- or FIV-based lentivector expression constructs and transduction of VSV-G pseudotyped viral particles. J Vis Exp 2012:e3171. [PMID: 22508377 DOI: 10.3791/3171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As with standard plasmid vectors, it is possible to transfect lentivectors in plasmid form into cells with low-to-medium efficiency to obtain transient expression of effectors. Packaging lentiviral expression constructs into pseudoviral particles, however, enables up to 100% transduction, even with difficult-to-transfect cells, such as primary, stem, and differentiated cells. Moreover, the lentiviral delivery does not produce the specific cellular responses typically associated with chemical transfections, such as cell death resulting from toxicity of the transfection reagent. When transduced into target cells, the lentiviral construct integrates into genomic DNA and provides stable expression of the small hairpin RNA (shRNA), cDNA, microRNA or reporter gene. Target cells stably expressing the effector molecule can be isolated using a selectable marker contained in the expression vector construct such as puromycin or GFP. After pseudoviral particles infect target cells, they cannot replicate within target cells because the viral structural genes are absent and the long terminal repeats (LTRs) are designed to be self-inactivating upon transduction. There are three main components necessary for efficient lentiviral packaging. 1. The lentiviral expression vector that contains some of the genetic elements required for packaging, stable integration of the viral expression construct into genomic DNA, and expression of the effector or reporter. 2. The lentiviral packaging plasmids that provide the proteins essential for transcription and packaging of an RNA copy of the expression construct into recombinant pseudoviral particles. This protocol uses the pPACK plasmids (SBI) that encode for gag, pol, and rev from the HIV or FIV genome and Vesicular Stomatitis Virus g protein (VSV-G) for the viral coat protein. 3. 293TN producer cells (derived from HEK293 cells) that express the SV40 large T antigen, which is required for high-titer lentiviral production and a neomycin resistance gene, useful for reselecting the cells for maintenance. An overview of the viral production protocol can be seen in Figure 1. Viral production starts by co-transfecting 293TN producer cells with the lentiviral expression vector and the packaging plasmids. Viral particles are secreted into the media. After 48-72 hours the cell culture media is harvested. Cellular debris is removed from the cell culture media, and the viral particles are precipitated by centrifugation with PEG-it for concentration. Produced lentiviral particles are then titered and can be used to transduce target cells. Details of viral titering are not included in this protocol, but can be found at: http://www.systembio.com/downloads/global_titer_kit_web_090710.pdf. This protocol has been optimized using the specific products indicated. Other reagents may be substituted, but the same results cannot be guaranteed.
Collapse
|