1
|
Li R, Wu X, Cheng J, Zhu Z, Guo M, Hou G, Li T, Zheng Y, Ma H, Lu H, Chen X, Zhang T, Zeng W. Polyamines protect porcine sperm from lipopolysaccharide-induced mitochondrial dysfunction and apoptosis via casein kinase 2 activation. J Anim Sci 2025; 103:skae383. [PMID: 39704338 PMCID: PMC11773192 DOI: 10.1093/jas/skae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial contamination is an inevitable issue during the processing of semen preservation in pigs. As a prototypical endotoxin from Gram-negative bacteria in semen, lipopolysaccharide (LPS) undermines sperm function during liquid preservation. Spermine and spermidine could protect cells against LPS-induced injury, and the content of spermine and spermidine in seminal plasma is positively correlated with sperm quality. Thus, the present study aimed to clarify whether addition of spermine or spermidine is beneficial to porcine semen preservation and able to prevent LPS-induced sperm damage. The supplementation of spermine and spermidine in the diluent resulted in higher sperm motility, viability, acrosome integrity, and mitochondrial membrane potential (ΔΨm) after preservation in vitro at 17 °C for 7 d (P < 0.05). LPS-induced sperm quality deterioration, ΔΨm decline, cellular adenosine-triphosphate depletion, mitochondrial ultrastructure abnormality, mitochondrial permeability transition pore opening, phosphatidylserine (PS) translocation, and caspase-3 activation (P < 0.05). Interestingly, spermine and spermidine alleviated the LPS-induced changes of the aforementioned parameters and mitigated the decrease in the microtubule-associated protein light chain 3-II (LC3-II) to LC3-I ratio. Meanwhile, the α and β subunits of casein kinase 2 (CK2) were detected at the connecting piece and the tail. Significantly, addition of 4,5,6,7-tetrabromobenzotriazole, a specific CK2 inhibitor, counteracted the beneficial effects of spermine and spermidine on sperm quality, mitochondrial activity, and apoptosis. Together, these results suggest that spermine and spermidine improve sperm quality and the efficiency of liquid preservation of porcine semen. Furthermore, spermine and spermidine alleviate LPS-induced sperm mitochondrial dysfunction and apoptosis in a CK2-dependent manner.
Collapse
Affiliation(s)
- Rongnan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaodong Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guochao Hou
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haidong Ma
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Xiaoxu Chen
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
3
|
Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, Sun P, Wu J, Bei W, Wen J, Wu X, Li F, Zhou Z, Zhu WG, Liu B, Wang Z. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. SCIENCE ADVANCES 2019; 5:eaav5078. [PMID: 30906869 PMCID: PMC6426468 DOI: 10.1126/sciadv.aav5078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
Defective nuclear lamina protein lamin A is associated with premature aging. Casein kinase 2 (CK2) binds the nuclear lamina, and inhibiting CK2 activity induces cellular senescence in cancer cells. Thus, it is feasible that lamin A and CK2 may cooperate in the aging process. Nuclear CK2 localization relies on lamin A and the lamin A carboxyl terminus physically interacts with the CK2α catalytic core and inhibits its kinase activity. Loss of lamin A in Lmna-knockout mouse embryonic fibroblasts (MEFs) confers increased CK2 activity. Conversely, prelamin A that accumulates in Zmpste24-deficent MEFs exhibits a high CK2α binding affinity and concomitantly reduces CK2 kinase activity. Permidine treatment activates CK2 by releasing the interaction between lamin A and CK2, promoting DNA damage repair and ameliorating progeroid features. These data reveal a previously unidentified function for nuclear lamin A and highlight an essential role for CK2 in regulating senescence and aging.
Collapse
Affiliation(s)
- Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Zuojun Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Yao Li
- School of Public Health, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Weixin Bei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Junqu Wen
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Xuli Wu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Feng Li
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Corresponding author. (Z.W.); (B.L.)
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Corresponding author. (Z.W.); (B.L.)
| |
Collapse
|
4
|
Bounaama A, Djerdjouri B, Laroche-Clary A, Le Morvan V, Robert J. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice. Toxicology 2012; 302:308-17. [PMID: 22982865 DOI: 10.1016/j.tox.2012.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.
Collapse
Affiliation(s)
- Abdelkader Bounaama
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | | | | | | | | |
Collapse
|
5
|
Iacomino G, Picariello G, D'Agostino L. DNA and nuclear aggregates of polyamines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1745-55. [PMID: 22705882 DOI: 10.1016/j.bbamcr.2012.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Polyamines (PAs) are linear polycations that are involved in many biological functions. Putrescine, spermidine and spermine are highly represented in the nucleus of eukaryotic cells and have been the subject of decades of extensive research. Nevertheless, their capability to modulate the structure and functions of DNA has not been fully elucidated. We found that polyamines self-assemble with phosphate ions in the cell nucleus and generate three forms of compounds referred to as Nuclear Aggregates of Polyamines (NAPs), which interact with genomic DNA. In an in vitro setting that mimics the nuclear environment, the assembly of PAs occurs within well-defined ratios, independent of the presence of the DNA template. Strict structural and functional analogies exist between the in vitro NAPs (ivNAPs) and their cellular homologues. Atomic force microscopy showed that ivNAPs, as theoretically predicted, have a cyclic structure, and in the presence of DNA, they form a tube-like arrangement around the double helix. Features of the interaction between ivNAPs and genomic DNA provide evidence for the decisive role of "natural" NAPs in regulating important aspects of DNA physiology, such as conformation, protection and packaging, thus suggesting a new vision of the functions that PAs accomplish in the cell nucleus.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Instituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Riecerche, Avellino, Italy.
| | | | | |
Collapse
|