1
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
He X, Cui Y, Li T, Luo L, Zeng Z, Ma Y, Chen Y. PU.1 alleviates the inhibitory effects of cigarette smoke on endothelial progenitor cell function and lung-homing through Wnt/β-catenin and CXCL12/CXCR4 pathways. Tob Induc Dis 2024; 22:TID-22-27. [PMID: 38274000 PMCID: PMC10809061 DOI: 10.18332/tid/174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/18/2023] [Accepted: 10/30/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lung-homing, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. METHODS C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, β-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. RESULTS CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of β-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. CONCLUSIONS PU.1 alleviates the inhibitory effects of CSE on EPC function and lung-homing via activating the canonical Wnt/β-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.
Collapse
Affiliation(s)
- Xue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
3
|
Schwarz N, Yadegari H. Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy. Hamostaseologie 2023; 43:325-337. [PMID: 37857295 DOI: 10.1055/a-2101-5936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Nadine Schwarz
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
5
|
He ZH, Chen Y, Chen P, Xie LH, Liang GB, Zhang HL, Peng HH. Cigarette smoke extract affects methylation status and attenuates Sca-1 expression of mouse endothelial progenitor cell in vitro. Tob Induc Dis 2021; 19:08. [PMID: 33542680 PMCID: PMC7842580 DOI: 10.18332/tid/131625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction appears in many smoking-related diseases, it is also an important pathophysiological feature. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and have a crucial effect on the repair and maintenance of endothelial integrity. Sca-1 is not only common in bone marrow-derived hematopoietic stem cells (HSCs), but it is also expressed in nonhematopoietic organs by tissue-resident stem and progenitor cells. The aim of this study is to investigate the impact of cigarette smoke extract (CSE) on the function of bone marrow-derived EPCs and the expression level of Sca-1 in EPCs, and also whether the methylation of Sca-1 is involved in EPC dysfunction. METHODS We measured EPC capacities including adhesion, secretion and proliferation, the concentration of endothelial nitric oxide synthase (eNOS) and apoptosis-inducing factor (AIF) in cell culture supernatant, and also Sca-1 expression and promoter methylation in EPCs induced by CSE. Decitabine (Dec) was applied to test whether it could alter the impact caused by CSE. RESULTS The adhesion, proliferation and secretion ability of EPCs can be induced to be decreased by CSE in vitro, accompanied by decreased concentrations of AIF and eNOS in cell culture supernatant and decreased Sca-1 expression in EPCs. In addition, Dec could partly attenuate the impact described above. There were no significant differences in the quantitative analysis of Sca-1 promoter methylation among different groups. CONCLUSIONS The decreased Sca-1 expression was related to EPC dysfunction induced by CSE. EPC dysfunction resulting from CSE may be related to methylation mechanism, but not the methylation of Sca-1 promoter.
Collapse
Affiliation(s)
- Zhi-Hui He
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Hua Xie
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gui-Bin Liang
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Liang Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huai-Huai Peng
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Sun YT, Liu XR, Sun DM, Yao JJ, Dong ZL, Qian J, Huang QF. Effects of Sirt1 on proliferation, migration, and apoptosis of endothelial progenitor cells in peripheral blood of SD rats with chronic obstructive pulmonary disease. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.326097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Liu Y, Huang X, Chen D, Chen F, Mo C, Guo Y, Xie C, Liu G, Zeng H, Sun Y, Yang Z. The detrimental qualitative and quantitative alterations of circulating endothelial progenitor cells in patients with bronchiectasis. Respir Med 2021; 176:106270. [PMID: 33302144 DOI: 10.1016/j.rmed.2020.106270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bronchiectasis is an independent risk factor for cardiovascular disease(CVD)and cardiac dysfunction. Endothelial progenitor cells (EPCs) play a crucial role in maintaining endothelial function, and is inversely correlated with cardiovascular risk factors or cardiac dysfunction. However, the relationship between EPCs and bronchiectasis is unknown. METHODS Twenty-nine patients with stable bronchiectasis and 15 healthy controls were recruited. Fasting venous blood were collected for determining circulating EPC number and activity as well as systemic inflammatory cytokines. RESULTS The number and migratory or proliferative activity of circulating EPCs in bronchiectasis patients were significantly reduced (p < 0.001). In high E-FACED group, the number of circulating EPCs evaluated by cell culture assay and EPC proliferation were decreased (p < 0.05). Similarly, the number and function of circulating EPCs were both reduced in low forced expiratory volume in 1 s (FEV1) or high mMRC group (p < 0.05). There was a significant correlation between circulating EPCs and bronchiectasis disease severity, according to the E-FACED score (p < 0.05), particularly to FEV1 (p < 0.05) and mMRC dyspnea score (p < 0.05). The count and activity of EPCs inversely correlated with hsCRP levels and IL-6 levels (p < 0.01). CONCLUSIONS Deficiencies in the number and function of circulating EPCs are present in patients with bronchiectasis. The changes are related to disease severity and may be partly attributed to systemic inflammation. The current findings may provide novel surrogate evaluation biomarkers and potential therapeutic target for bronchiectasis.
Collapse
Affiliation(s)
- Yangli Liu
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Dubo Chen
- Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Fengjia Chen
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Chengqiang Mo
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, PR China
| | - Gexiu Liu
- Institute of Hematology, School of Basic Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yunwei Sun
- Guangzhou Development District Hospital, Guangzhou, 510730, Province Guangdong, PR China.
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China; NHC Key Laboratory on Assisted Circulation, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
8
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
9
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
10
|
Skurikhin EG, Krupin VA, Pershina OV, Pan ES, Ermolaeva LA, Pakhomova AV, Rybalkina OY, Ermakova NN, Khmelevskaya ES, Vaizova OE, Zhukova MS, Pozdeeva AS, Skurikhina VE, Goldberg VE, Dygai AM. Endothelial Progenitor Cells and Notch-1 Signaling as Markers of Alveolar Endothelium Regeneration in Pulmonary Emphysema. Bull Exp Biol Med 2018; 166:201-206. [PMID: 30488216 DOI: 10.1007/s10517-018-4314-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 12/21/2022]
Abstract
We studied the effects of elastase, cigarette smoke extract, D-galactosamine hydrochloride, and tyrosine kinase inhibitor SU5416 on endothelial progenitor cells and angiogenesis precursors, as well as on Notch-1 expression by immature endothelial cells. Simultaneously with pulmonary emphysema, different damaging factors with diverse mechanisms of action caused pathological changes in the microvascular network of the lungs and destroyed the alveolar endothelium in female C57Bl/6 mice. D-galactosamine hydrochloride disturbed mobilization of endothelial progenitor cells expressing VEGFR (CD45-CD309+) and angiogenesis progenitors (CD45-CD309+CD117+) and their migration into emphysema expanded lungs. Elastase inhibited VEGFR-expressing endothelial progenitor cells, while cigarette smoke extract inhibited cells with CD45-CD31+CD34+ phenotype. In pulmonary emphysema provoked by elastase or D-galactosamine hydrochloride, angiogenesis was provided by endothelial cells with CD45-CD31+CD34+ phenotype, whereas in emphysema modeled with SU5416 or cigarette smoke extract, it was provided by the endothelial VEGFR-expressing cells and mature CD31+ endothelial cells, respectively. Replenishment of immature endothelial cells damaged by elastase and SU5416 involved Notch-1+ angiogenesis precursors and Notch-1+ endothelial progenitor cells with VEGFR.
Collapse
Affiliation(s)
- E G Skurikhin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - V A Krupin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O V Pershina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Pan
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L A Ermolaeva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Pakhomova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O Yu Rybalkina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N N Ermakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Khmelevskaya
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O E Vaizova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M S Zhukova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A S Pozdeeva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V E Skurikhina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V E Goldberg
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A M Dygai
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
11
|
Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD 2018; 15:536-556. [DOI: 10.1080/15412555.2018.1536116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irene Coppolino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Royal Brompton Hospital Biomedical Research Unit, Imperial College, London, UK
| | - Giuseppe Girbino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Gaetano Caramori
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
12
|
Liu X, Liu Y, Huang X, Lin G, Xie C. Endothelial progenitor cell dysfunction in acute exacerbation of chronic obstructive pulmonary disease. Mol Med Rep 2017; 16:5294-5302. [PMID: 28849108 PMCID: PMC5647060 DOI: 10.3892/mmr.2017.7260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are decreased in cardiac dysfunction morbidity associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Therefore, the present study aimed to assess the role of EPCs in AECOPD. Patients with AECOPD (n=27) or stable COPD (n=26) were enrolled. Systemic inflammatory markers (high-sensitivity C-reactive protein) were measured. In addition, EPCs were counted, isolated and cultured, and their proliferative, migratory, adhesive and tube-forming capabilities were determined, in cells from patients with AECOPD and stable COPD. EPC number was lower in patients with AECOPD (5.1±2.6×103/ml) compared with patients with stable COPD (6.0±3.2×103/ml). Migration assay indicated that the early-EPCs isolated from patients with AECOPD were significantly less mobile than EPCs derived from stable COPD subjects, at a stromal-cell derived factor-1α concentration of 100 ng/ml (3,550/30,000 vs. 7,853/30,000, P<0.05). C-X-C chemokine receptor-4 positivity was significantly reduced in AECOPD patients (16.1±9.9 vs. 56.33±6.3%, P<0.05). Furthermore, fewer early-EPC clusters were formed by EPCs derived from AECOPD, compared with those derived from stable COPD (8.2±0.86 vs. 14.4±1.36, P=0.027). Stable COPD late-EPCs were markedly deficient in intact tubule formation, however AECOPD late-EPCs formed no tubules. The number of AECOPD- and stable COPD-derived late-EPCs adhering to Matrigel-induced tubules was 36.8±1.85 and 20.6±1.36 (P<0.05) respectively, and the cluster of differentiation 31 positivity in late-EPCs was 79.69±1.3 and 29.1±2.47%, in AECOPD and stable COPD patients, respectively (P<0.001). The findings demonstrated that early-EPCs are decreased and dysfunctional in AECOPD patients, which may contribute to the altered vascular endothelium in this patient population.
Collapse
Affiliation(s)
- Xiaoran Liu
- Emergency Department, The Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangli Liu
- Respiratory Department, The First Affiliated Hospital of Sun Yat‑sen University, Institute of Respiratory Disease of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinyan Huang
- Respiratory Department, The First Affiliated Hospital of Sun Yat‑sen University, Institute of Respiratory Disease of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gengpeng Lin
- Respiratory Department, The First Affiliated Hospital of Sun Yat‑sen University, Institute of Respiratory Disease of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Canmao Xie
- Respiratory Department, The First Affiliated Hospital of Sun Yat‑sen University, Institute of Respiratory Disease of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
13
|
Impaired mRNA Expression of the Migration Related Chemokine Receptor CXCR4 in Mesenchymal Stem Cells of COPD Patients. Int J Inflam 2017; 2017:6089425. [PMID: 28804668 PMCID: PMC5539942 DOI: 10.1155/2017/6089425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Defective tissue repair and remodeling are main aspects of Chronic Obstructive Pulmonary Disease (COPD) pathophysiology. Bone marrow mesenchymal stem cells (BM-MSCs) have been implicated in this direction, as their functional impairment and recruitment could possibly contribute to disease development and progression. The present study characterizes for the first time the expression of migration related chemokine receptors and their ligands in BM-MSCs from COPD patients. CXCR4/SDF1a and CCR7/CCL19-CCL21 mRNA levels were evaluated in BM-MSCs obtained from twelve COPD patients and seven healthy donors. SDF1a protein levels in sera and BM-MSCs' conditioned media were also evaluated. CXCR4, SDF1a, CCL19, and CCL21 mRNA levels were significantly reduced in COPD BM-MSCs while CCR7 levels were undetectable. Notably, SDF1a protein levels were marginally elevated in both patient sera and BM-MSCs' conditioned media while the increase in SDF1a serum levels significantly correlated with disease severity in COPD. Our findings show posttranscriptional regulation of SDF1a levels in BM-MSCs of COPD patients and significant downregulation of SDF1a and CXCR4 mRNA indicating an involvement of the SDF1a signaling pathway in the disease pathophysiology.
Collapse
|
14
|
Salter B, Sehmi R. The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease. J Thorac Dis 2017; 9:2168-2177. [PMID: 28840018 DOI: 10.21037/jtd.2017.07.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Brittany Salter
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One 2017; 12:e0173446. [PMID: 28291826 PMCID: PMC5349667 DOI: 10.1371/journal.pone.0173446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.
Collapse
|
16
|
Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res 2017; 18:20. [PMID: 28100233 PMCID: PMC5241996 DOI: 10.1186/s12931-017-0505-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its’ progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.
Collapse
Affiliation(s)
- Clara E Green
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK.
| | - Alice M Turner
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD. Can Respir J 2016; 2016:1472823. [PMID: 27445517 PMCID: PMC4904543 DOI: 10.1155/2016/1472823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 01/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs) are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs) and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α) compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis.
Collapse
|
18
|
Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3583956. [PMID: 26697131 PMCID: PMC4678076 DOI: 10.1155/2016/3583956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.
Collapse
|
19
|
Pizarro S, García-Lucio J, Peinado VI, Tura-Ceide O, Díez M, Blanco I, Sitges M, Petriz J, Torralba Y, Marín P, Roca J, Barberà JA. Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PLoS One 2014; 9:e106163. [PMID: 25171153 PMCID: PMC4149524 DOI: 10.1371/journal.pone.0106163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit.
Collapse
MESH Headings
- AC133 Antigen
- Aged
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Glycoproteins/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Leukocyte Common Antigens/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Peptides/metabolism
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Smoking
Collapse
Affiliation(s)
- Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Víctor I. Peinado
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Díez
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Petriz
- Department of Cytometry, Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro Marín
- Department of Cryopreservervation, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Increased cardiovascular risk in patients with chronic obstructive pulmonary disease and the potential mechanisms linking the two conditions: a review. Cardiol Rev 2014; 21:196-202. [PMID: 23095685 DOI: 10.1097/crd.0b013e318279e907] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases, especially coronary artery disease (CAD), are the leading causes of death in patients with chronic obstructive pulmonary disease (COPD). There is a high prevalence of common risk factors in the COPD/CAD patient population including smoking, sedentary lifestyle and low socio-economic status. However, various studies have shown that airflow limitation is an independent risk factor for cardiovascular diseases. Chronic low-grade systemic inflammation, oxidative stress and increased platelet activation have been widely reported to be pathophysiological links between COPD and atherosclerosis. Statins and inhaled corticosteroids have been investigated as potential therapeutic interventions in COPD that may lower cardiovascular risk. The goals of this review are to examine the evidence for increased cardiovascular risk in COPD patients, the possible mechanisms linking these two chronic conditions, to discuss possible predictors or markers of poor outcomes among patients diagnosed with both COPD and CAD, and the therapeutic options aimed at reducing cardiovascular risks associated with COPD.
Collapse
|
21
|
Janssen WJ, Yunt ZX, Muldrow A, Kearns MT, Kloepfer A, Barthel L, Bratton DL, Bowler RP, Henson PM. Circulating hematopoietic progenitor cells are decreased in COPD. COPD 2013; 11:277-89. [PMID: 24182349 DOI: 10.3109/15412555.2013.841668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. OBJECTIVES The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. METHODS Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45(dim) CD34+) and HPCs (CD45(+) CD34(+) VEGF-R2(+)) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. MEASUREMENTS AND MAIN RESULTS HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. CONCLUSIONS HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD.
Collapse
Affiliation(s)
- William J Janssen
- 1Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brittan M, Hoogenboom MM, Padfield GJ, Tura O, Fujisawa T, Maclay JD, Macnee W, Mills NL. Endothelial progenitor cells in patients with chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2013; 305:L964-9. [PMID: 24142520 DOI: 10.1152/ajplung.00183.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease is not fully understood. The objective of this study was to compare circulating endothelial progenitor cells in patients with chronic obstructive pulmonary disease to age, sex, and cigarette smoking matched healthy controls. Patients with chronic obstructive pulmonary disease (n = 37) and healthy controls (n = 19) were matched by age, sex, and smoking status. Circulating hematopoietic progenitor cells (CD34(+) or CD133(+) mononuclear cells) and endothelial progenitor cells (CD34(+)KDR(+) or CD34(+)CD133(+)KDR(+) mononuclear cells) were quantified by flow cytometry. Endothelial cell-colony forming units from peripheral blood mononuclear cells were quantified in vitro and phenotypic analysis carried out using immunocytochemistry. Patients with chronic obstructive pulmonary disease had more circulating mononuclear cells compared with controls (8.4 ± 0.6 vs. 5.9 ± 0.4 × 10(9) cells/l; P = 0.02). CD34(+) hematopoietic progenitor cells were reduced as a proportion of mononuclear cells in patients compared with controls (0.99 ± 0.12 vs. 1.9 ± 0.12%; P = 0.02); however, there were no differences in the absolute number of CD34(+), CD34(+)KDR(+), or CD34(+)CD133(+)KDR(+) cells (P > 0.05 for all). Endothelial cell-colony forming units were increased in patients with chronic obstructive pulmonary disease compared with controls (13.7 ± 5.2 vs. 2.7 ± 0.9 colonies; P = 0.048). In contrast to previous studies, the number of circulating progenitor cells was not reduced in patients with chronic obstructive pulmonary disease compared with carefully matched controls. It seems unlikely that circulating endothelial progenitor cells or failure of angiogenesis plays a central role in the development of emphysema.
Collapse
Affiliation(s)
- Mairi Brittan
- BHF/Univ. Centre for Cardiovascular Science, The Univ. of Edinburgh, Scottish Centre for Regenerative Medicine, Little France Crescent, Edinburgh EH16 4UU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Roca M, Verduri A, Corbetta L, Clini E, Fabbri LM, Beghé B. Mechanisms of acute exacerbation of respiratory symptoms in chronic obstructive pulmonary disease. Eur J Clin Invest 2013; 43:510-21. [PMID: 23489139 DOI: 10.1111/eci.12064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Exacerbations of chronic obstructive respiratory disease (ECOPD) are acute events characterized by worsening of the patient's respiratory symptoms, particularly dyspnoea, leading to change in medical treatment and/or hospitalisation. AECOP are considered respiratory diseases, with reference to the respiratory nature of symptoms and to the involvement of airways and lung. Indeed respiratory infections and/or air pollution are the main causes of ECOPD. They cause an acute inflammation of the airways and the lung on top of the chronic inflammation that is associated with COPD. This acute inflammation is responsible of the development of acute respiratory symptoms (in these cases the term ECOPD is appropriate). However, the acute inflammation caused by infections/pollutants is almost associated with systemic inflammation, that may cause acute respiratory symptoms through decompensation of concomitant chronic diseases (eg acute heart failure, thromboembolism, etc) almost invariably associated with COPD. Most concomitant chronic diseases share with COPD not only the underlying chronic inflammation of the target organs (i.e. lungs, myocardium, vessels, adipose tissue), but also clinical manifestations like fatigue and dyspnoea. For this reason, in patients with multi-morbidity (eg COPD with chronic heart failure and hypertension, etc), the exacerbation of respiratory symptoms may be particularly difficult to investigate, as it may be caused by exacerbation of COPD and/or ≥ comorbidity, (e.g. decompensated heart failure, arrhythmias, thromboembolisms) without necessarily involving the airways and lung. In these cases the term ECOPD is inappropriate and misleading.
Collapse
Affiliation(s)
- Mihai Roca
- Section of Respiratory Diseases, Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Liu X, Tan W, Liu Y, Lin G, Xie C. The role of the β2 adrenergic receptor on endothelial progenitor cells dysfunction of proliferation and migration in chronic obstructive pulmonary disease patients. Expert Opin Ther Targets 2013; 17:485-500. [PMID: 23448263 DOI: 10.1517/14728222.2013.773975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), with > 44% of these patients presenting with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium, thereby, protecting against atherosclerosis. The β2 adrenergic receptor (β2AR) expressed on mononuclear cells in peripheral blood and CD34(+) cells in bone has been shown to regulate T-cell traffic and proliferation. At present, there have been few systematic studies evaluating β2AR expression on EPCs in the peripheral blood of COPD patients and its role in EPCs migration and proliferation. Therefore, the objective of this study was to determine the role of β2ARs in EPCs function and, if this role is altered, in the COPD population. METHODS EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence-activated cell sorting. β2AR expression on EPCs was determined by western blotting and real-time PCR. The transwell migration assay was performed to determine the migration capacity of EPCs treated with a β2AR agonist, antagonist and β2AR monoclonal antibody. EPCs proliferation was assayed throughout the cell cycle. Following arterial damage in NOD/SCID mice, the number of EPCs treated with siRNA-β2AR incorporated at the injured vascular site was determined by fluorescence microscopy. RESULTS Data showed a significant increase in the total number of β2ARs in addition to an increased expression on early EPCs in COPD patients. COPD EPCs treated with β2AR antagonist (ICI 118551) increased migration to SDF-1α when compared to treatment with the β2AR agonist, norepinephrine. These changes were directly correlated to increase CXCR4 on EPCs. The proliferation of early EPCs treated with β2AR antagonist was improved and was correlated to an intercellular decrease in reactive oxygen species. CONCLUSION Changes in β2AR in COPD patients alter EPCs migration and proliferation, contributing to altered EPC repair capacity in this patient population.
Collapse
Affiliation(s)
- Xiaoran Liu
- First Affiliated Hospital of Sun Yat-sen University, Respiratory Department , Zhongshan Road, Guangzhou City, Guangdong Province 58, 51008 , People's Republic of China.
| | | | | | | | | |
Collapse
|
25
|
Using Cell-Based Strategies to Break the Link between Bronchopulmonary Dysplasia and the Development of Chronic Lung Disease in Later Life. Pulm Med 2013; 2013:874161. [PMID: 23401768 PMCID: PMC3557634 DOI: 10.1155/2013/874161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/16/2012] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have changed the course of lung injury and enabled the survival of infants born as early as 23-24 weeks of gestation, BPD still remains a common complication of extreme prematurity, and there is no specific treatment for it. Furthermore, children, adolescents, and adults who were born very preterm and developed BPD have an increased risk of persistent lung dysfunction, including early-onset emphysema. Therefore, it is possible that early-life pulmonary insults, such as extreme prematurity and BPD, may increase the risk of COPD later in life, especially if exposed to secondary challenges such as respiratory infections and/or smoking. Recent advances in our understanding of stem/progenitor cells and their potential to repair damaged organs offer the possibility of cell-based treatments for neonatal and adult lung injuries. This paper summarizes the long-term pulmonary outcomes of preterm birth and BPD and discusses the recent advances of cell-based therapies for lung diseases, with a particular focus on BPD and COPD.
Collapse
|