1
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Li GF, Gao Y, Weinberg ED, Huang X, Xu YJ. Role of Iron Accumulation in Osteoporosis and the Underlying Mechanisms. Curr Med Sci 2023; 43:647-654. [PMID: 37326889 DOI: 10.1007/s11596-023-2764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/09/2021] [Indexed: 06/17/2023]
Abstract
Osteoporosis is prevalent in postmenopausal women. The underlying reason is mainly estrogen deficiency, but recent studies have indicated that osteoporosis is also associated with iron accumulation after menopause. It has been confirmed that some methods of decreasing iron accumulation can improve the abnormal bone metabolism associated with postmenopausal osteoporosis. However, the mechanism of iron accumulation-induced osteoporosis is still unclear. Iron accumulation may inhibit the canonical Wnt/β-catenin pathway via oxidative stress, leading to osteoporosis by decreasing bone formation and increasing bone resorption via the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-B ligand (RANKL)/receptor activator of nuclear factor kappa-B (RANK) system. In addition to oxidative stress, iron accumulation also has been reported to inhibit either osteoblastogenesis or osteoblastic function as well as to stimulate either osteoclastogenesis or osteoclastic function directly. Furthermore, serum ferritin has been widely used for the prediction of bone status, and nontraumatic measurement of iron content by magnetic resonance imaging may be a promising early indicator of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guang-Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - Yan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China
| | - E D Weinberg
- Department of Biology & Program in Medical Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Xi Huang
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, 10016, USA
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 2015004, China.
- Osteoporosis Institute of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
3
|
Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin. Int J Sport Nutr Exerc Metab 2022; 32:177-185. [PMID: 34942595 DOI: 10.1123/ijsnem.2021-0263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.
Collapse
|
4
|
Wijekoon S, Sunaga T, Wang Y, Mwale C, Kim S, Okumura M. Pentosan polysulfate regulates hepcidin 1-facilitated formation and function of osteoclast derived from canine bone marrow. PLoS One 2022; 17:e0265596. [PMID: 35299233 PMCID: PMC8929557 DOI: 10.1371/journal.pone.0265596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Hepcidin which is the crucial regulator of iron homeostasis, produced in the liver in response to anemia, hypoxia, or inflammation. Recent studies have suggested that hepcidin and iron metabolism are involved in osteoporosis by inhibiting osteoblast function and promoting osteoclastogenesis. Pentosan polysulfate (PPS) is a heparin analogue and promising novel therapeutic for osteoarthritis (OA). This study was undertaken to determine whether PPS inhibits hepcidin-facilitated osteoclast (OC) differentiation and iron overload. Canine (n = 3) bone marrow mononuclear cells were differentiated to OC by macrophage colony-stimulating factor and receptor-activator of nuclear factor kappaB ligand with the treatment of hepcidin1 (200, 400, 800, 1200 nmol/L) and PPS (1, 5, 10, 20, 40 μg/mL). Differentiation and function of OC were accessed using tartrate-resistant acid phosphate staining and bone resorption assay while monitoring ferroportin1 (FPN1) and iron concentration by immunocytochemistry. Gene expression of OC for cathepsin K (CTK), matrix metallopeptidase-9, nuclear factor of activated-T-cells cytoplasmic 1 and FPN1 was examined. Hepcidin1 showed significant enhancement of OC number at 800 nmol/L (p<0.01). PPS impeded hepcidin-facilitated OC at 1, 5 and 10 μg/mL and reduction of resorption pits at 5 and 10 μg/mL (p< 0.01). All OC specific genes were downregulated with PPS, specifically in significant manner with CTK at higher concentrations. However, heparin induced FPN1 internalization and degradation was inhibited at higher concentrations of PPS while restoring iron-releasing capability of OC. We demonstrate for the first time that PPS is a novel-inhibitor of hepcidin-facilitated OC formation/function which might be beneficial for treatment of OA and osteoporosis.
Collapse
Affiliation(s)
- Suranji Wijekoon
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | - Yanlin Wang
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | - Carol Mwale
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Phoaubon S, Lertsuwan K, Teerapornpuntakit J, Charoenphandhu N. Hepcidin induces intestinal calcium uptake while suppressing iron uptake in Caco-2 cells. PLoS One 2021; 16:e0258433. [PMID: 34644351 PMCID: PMC8513844 DOI: 10.1371/journal.pone.0258433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.
Collapse
Affiliation(s)
- Supathra Phoaubon
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
6
|
Scimeca M, Bonanno E. New highlight in breast cancer development: the key role of hepcidin and iron metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S56. [PMID: 30613631 DOI: 10.21037/atm.2018.10.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS San Raffaele, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy.,"Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
7
|
Zhang P, Wang S, Wang L, Shan BC, Zhang H, Yang F, Zhou ZQ, Wang X, Yuan Y, Xu YJ. Hepcidin is an endogenous protective factor for osteoporosis by reducing iron levels. J Mol Endocrinol 2018; 60:297-306. [PMID: 29563156 DOI: 10.1530/jme-17-0301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Postmenopausal osteoporosis is a global health issue. Although a lack of estrogen is considered the major reason for postmenopausal osteoporosis, other factors might also contribute the etiology of the disease. In previous reports, we and others proposed that iron accumulation after menopause accelerates osteoporosis, and here, we genetically modified the expression of an endogenous hormone, hepcidin, to modulate iron status in a mouse model. Our results show that hepcidin levels negatively correlate with bone loss in both knockout and overexpression (with ovariectomy) murine models. In addition, iron overload enhances reactive oxygen species (ROS) activity and attenuates the functions of primary osteoblasts, while iron depletion could reverse this phenomenon through inhibiting the functions of primary osteoclasts. Therefore, our results provide more evidence of the 'iron accumulation' hypothesis, which suggests that high iron levels are risk factors for osteoporosis, and the 'Huang's hypothesis' that hepcidin is a potential drug target for the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Wang
- Emergency DepartmentZhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Wang
- Department of RadiologyChildren's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Chen Shan
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Zhang
- Osteoprosis Institute of Soochow UniversitySuzhou, China
| | - Fan Yang
- Osteoprosis Institute of Soochow UniversitySuzhou, China
| | - Zhi Qiang Zhou
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao Wang
- Osteoprosis Institute of Soochow UniversitySuzhou, China
| | - Ye Yuan
- Osteoprosis Institute of Soochow UniversitySuzhou, China
| | - You Jia Xu
- Department of Orthopaedicsthe Second Affiliated Hospital of Soochow University, Suzhou, China
- Osteoprosis Institute of Soochow UniversitySuzhou, China
| |
Collapse
|
8
|
Zhang X, Liu Z, Lou Z, Chen F, Chang S, Miao Y, Zhou Z, Hu X, Feng J, Ding Q, Liu P, Gu N, Zhang H. Radiosensitivity enhancement of Fe3O4@Ag nanoparticles on human glioblastoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:975-984. [DOI: 10.1080/21691401.2018.1439843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiaohong Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou University, Suzhou, PR China
| | - Zhujun Liu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
| | - Feng Chen
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Shuquan Chang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Yuji Miao
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Zhuo Zhou
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Xiaodan Hu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Jundong Feng
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Qi Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
| | - Peidang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
| | - Haiqian Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou University, Suzhou, PR China
| |
Collapse
|
9
|
Liu J, Qian L, Guo L, Feng Y. Studying hepcidin and related pathways in osteoblasts using a mouse model with insulin receptor substrate 1‑loss of function. Mol Med Rep 2017; 17:350-357. [PMID: 29115497 DOI: 10.3892/mmr.2017.7876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 07/11/2017] [Indexed: 11/05/2022] Open
Abstract
Hepcidin is one of the most important proteins in iron metabolism. In the present study, its role in iron metabolism and the associated signaling pathways involved was investigated in a mouse model with insulin receptor substrate 1‑loss of function (IRS‑/‑), and osteoblasts in the iron overload condition. Protein expression levels of hepcidin, interleukin 6 (IL‑6), bone morphogenetic protein receptor 1α and ferritin demonstrated a significant increase in the liver of the IRS‑/‑ mice compared with the IRS+/‑ and IRS+/+ mice. Hepcidin levels in the jaw bone were also increased in the IRS‑/‑ mice (although not significantly). Furthermore, mRNA expression levels of bone morphogenetic protein 6 (BMP6) and ferroportin (FPN) were significantly increased in the liver of the IRS‑/‑ mice compared with the other two models, but no significant differences were observed in the transferrin receptor mRNA expression levels. Additionally, the mRNA expression of hepcidin, FPN and IL‑6 was upregulated in osteoblasts after ferric ammonium citrate exposure, while the mRNA expression of BMP6 was inhibited. Collectively, the results of the present study indicated that hepcidin is involved in iron metabolism in IRS‑1‑/‑ mice via the signaling pathways involving BMP6 and IL‑6. Furthermore, hepcidin is also involved in iron metabolism in osteoblasts under iron overload conditions. Therefore, hepcidin and its associated signaling pathway proteins may represent potential targets for the treatment of conditions associated with iron overload.
Collapse
Affiliation(s)
- Jia Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Qian
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Linna Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
10
|
Xu Z, Sun W, Li Y, Ling S, Zhao C, Zhong G, Zhao D, Song J, Song H, Li J, You L, Nie G, Chang Y, Li Y. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone 2017; 94:152-161. [PMID: 27686598 DOI: 10.1016/j.bone.2016.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Iron overload inhibits osteoblast function and promotes osteoclastogenesis. Hepcidin plays an important role in this process. The changes in iron content and the regulation of hepcidin under unloading-induced bone loss remain unknown. A hindlimb suspension model was adopted to simulate unloading-induced bone loss in mice. The results showed that iron deposition in both liver and bone was markedly increased in hindlimb unloaded mice, and was accompanied by the upregulation of osteoclast activity and downregulation of osteoblast activity. The iron chelator deferoxamine mesylate (DFO) reduced the iron content in bone and alleviated unloading-induced bone loss. The increased iron content in bone was mainly a result of the upregulation of transferrin receptor 1 (TfR1) and divalent metal transporter 1 with iron response element (DMT1+IRE), rather than changes in the iron transporter ferroportin 1 (FPN1). The hepcidin level in the liver was significantly higher, while the FPN1 level in the duodenum was substantially reduced. However, there were no changes in the FPN1 level in bone tissue. During hindlimb unloading, downregulation of hepcidin by siRNA increased iron uptake in bone and liver, which aggravated unloading-induced bone loss. In summary, these data show that unloading-induced bone loss was orchestrated by iron overload and coupled with the regulation of hepcidin by the liver.
Collapse
Affiliation(s)
- Zi Xu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Weijia Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chenyang Zhao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Hailin Song
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinqiao Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Linhao You
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guangjun Nie
- Key Laboratory of Chinese Academy of Sciences for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
11
|
Jiang Y, Yan Y, Wang X, Zhu G, Xu YJ. Hepcidin inhibition on the effect of osteogenesis in zebrafish. Biochem Biophys Res Commun 2016; 476:1-6. [PMID: 27233600 DOI: 10.1016/j.bbrc.2016.05.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022]
Abstract
Iron overload, as a risk factor for osteoporosis, can result in the up-regulation of Hepcidin, and Hepcidin knockout mice display defects in their bone microarchitecture. However, the molecular and genetic mechanisms underlying Hepcidin deficiency-derived bone loss remain unclear. Here, we show that hepcidin knockdown in zebrafish using morpholinos leads to iron overload. Furthermore, a mineralization delay is observed in osteoblast cells in hepcidin morphants, and these defects could be partially restored with microinjection of hepcidin mRNA. Quantitative real-time PCR analyses revealed the osteoblast-specific genes alp, runx2a, runx2b, and sp7 in morphants are down-regulated. Furthermore, we confirmed qRT-PCR results by in situ hybridization and found down-regulated genes related to osteoblast function in hepcidin morphants. Most importantly, we revealed that hepcidin was capable of removing whole-body iron which facilitated larval recovery from the reductions in bone formation and osteogenesis induced by iron overload.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China; Department of Orthopedics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214000, China; Osteoporosis Diagnosis and Treatment Technology, Institute of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Yilin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Xiao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China; Osteoporosis Diagnosis and Treatment Technology, Institute of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Guoxing Zhu
- Department of Orthopedics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214000, China.
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China; Osteoporosis Diagnosis and Treatment Technology, Institute of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.
| |
Collapse
|
12
|
Yalcintepe L, Halis E. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin. Bosn J Basic Med Sci 2016; 16:14-20. [PMID: 26773173 DOI: 10.17305/bjbms.2016.576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a "two-sided effect" in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent.
Collapse
|
13
|
Effects of mouse hepcidin 1 treatment on osteoclast differentiation and intracellular iron concentration. Inflammation 2015; 38:718-27. [PMID: 25059214 DOI: 10.1007/s10753-014-9982-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hepcidin is a key player in the regulation of mammalian iron homeostasis. Because iron overload may be one of the causes of osteoporosis, hepcidin may have therapeutic potential for osteoporosis patients. However, the effects of hepcidin on bone metabolism are not fully clear. We recently found that hepcidin can increase intracellular iron and calcium levels and promote mineralization in osteoblasts. The present study was designed to evaluate the effects of hepcidin on osteoclasts. Our results showed that mouse hepcidin 1 (MH1) can increase the number of TRAP-positive MNCs concomitant in both bone marrow-derived macrophages (BMMs) and RAW264.7 cells and upregulate mRNA levels of TRAP, cathepsin K, and MMP-9 and increase TRAP-5b protein secretion in RAW264.7 cells. Moreover, MH1 can downregulate the level of FPN1 protein and increase intracellular iron in RAW 264.7 cells. Therefore, we conclude that MH1 can significantly facilitate osteoclast differentiation in vitro. The mechanism behind accelerated differentiation may be associated with increased levels of intracellular iron. These findings may facilitate understanding of the effects of hepcidin on bone metabolism.
Collapse
|
14
|
Chen B, Li GF, Shen Y, Huang XI, Xu YJ. Reducing iron accumulation: A potential approach for the prevention and treatment of postmenopausal osteoporosis. Exp Ther Med 2015; 10:7-11. [PMID: 26170904 DOI: 10.3892/etm.2015.2484] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/27/2015] [Indexed: 01/21/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic bone metabolism disease, characterized by progressive bone loss following menopause and a subsequent increase in fracture risk. Estrogen deficiency as a result of menopause is known to increase bone resorption and accelerate bone loss. Furthermore, postmenopausal women may exhibit iron accumulation, in addition to estrogen deficiency. Elevated iron levels are a risk factor for PMOP in postmenopausal women, and reducing the iron overload has been demonstrated to benefit bone cell metabolism in vitro and improve the bone in vivo by normalizing osteoclastic bone resorption and formation. The identification of hepcidin was a key development in the field of iron metabolism in the previous decade. We hypothesize that hepcidin may aid in the prevention and treatment of PMOP due to its capacity to control body iron stores and its intrinsic effects on osteoblast function. The aim of the current review was to highlight the role of iron accumulation in the pathogenesis of PMOP and to evaluate the possible use of hepcidin as a potential therapy for this condition.
Collapse
Affiliation(s)
- Bin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Guang-Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ying Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - X I Huang
- Division of Rheumatology, NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
15
|
Lu H, Lian L, Shi D, Zhao H, Dai Y. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/P38 signaling pathways in mesenchymal stem cells. Mol Med Rep 2014; 11:143-50. [PMID: 25351366 PMCID: PMC4237087 DOI: 10.3892/mmr.2014.2769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
The ability of mesenchymal stem cells (MSCs) to differentiate into osteogenic lineages requires management for their future use in treating bone destruction and osteoporosis. Hepcidin is closely associated with bone metabolism, however, it remains to be elucidated whether hepcidin affects osteogenic differentiation in MSCs. The present study demonstrated that hepcidin enhanced osteoblastic differentiation and mineralization, which was manifested by an upregulation in the differentiation markers alkaline phosphatase and osteogenic genes. Furthermore, the expression levels of bone morphogenetic proteins and small mothers against decapentaplegic homologs were concomitantly increased following hepcidin treatment. In addition, the p38 mitogen-activated protein kinase may be an upstream kinase for osteoblastic differentiation. Thus, hepcidin may be important in the osteogenic differentiation of MSCs and may be considered as a target in the development of therapies for pathological bone loss.
Collapse
Affiliation(s)
- Huading Lu
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liyi Lian
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dehai Shi
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huiqing Zhao
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuhu Dai
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
16
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|